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Preface 
 
Intended Audience 
This book is intended for students seeking an introduction to the 
object-oriented way of thinking and how that is achieved through 
analysis and design activities.  It is not mandatory that you have prior 
experience programming in an object-oriented language such as C++ 
or Java.  It is expected that you have some familiarity with high-level 
languages, as throughout the book, many references are made to 
familiar high-level language constructs.  As such, familiarity with 
languages such as BASIC, C, COBOL, FORTRAN, PL/1, Pascal, etc., is 
sufficient.  However, any familiarity with object-oriented languages 
should reduce your learning curve. 

How the Book is Organized 
The basic concepts of object-oriented analysis and design are covered 
in Chapters 1 to 6.  Chapters 7 to 9 introduce more advanced concepts 
such as the development process, object-oriented architecture and 
distributed computing.  Throughout the book, UML is used for class 
and object modeling. 
 
  Chapter 1 contains an introduction to object-oriented concepts 
starting with tracing the evolutionary steps of software engineering.  
Chapters 2 to 5 introduce the concepts of classes and objects, 
progressing through discussions of more complex relationships.  An 
example development project is introduced in Chapter 1.  At the end 
of each of Chapters 2 to 6, the Chapter’s material is applied to the 
example, evolving it from the requirements through analysis and 
design.   Here, the focus is on the applying the concepts introduced in 
each chapter.  Chapter 6 discusses the elements of design and the 
evaluation of design.  This chapter also discusses “connecting” user 
interfaces to object models.  At the end of the chapter, these are 
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applied to the example.  While not a book on programming, where 
appropriate, there are examples in both C++ and Java, in addition to 
pseudocode. 
 
In Chapter 7, we take all the activities done so far in the previous 
chapters and formalize them into an overall lifecycle partitioned into 
phases.  The discussion is focused on which activities are allocated to 
which phases and why. 
 
Chapter 8 discusses interfaces, as “independent” abstract constructs, 
not just as a description of the public operations defined in an 
abstraction.  Interfaces, as used in distributed computing are reviewed 
also.  The chapter ends with the definition of interfaces in UML for the 
example. 
 
In Chapter 9, we discuss software architecture and distributed 
systems.  The chapter provides a definition of architecture and 
discusses various architectures.  Component architectures are also 
discussed.  At the end of the chapter, we evolve our example’s 
architecture to be component based. 
 
Chapter 10 discusses how the attributes of the object-oriented 
methodology address some of the issues facing IT managers.  It ends 
with a brief discussion of some products available. 

Trademarks 
Various products of various companies are mentioned throughout the 
book.  These names are trademarks of the companies, as follows: 
 
Java is a trademark of Sun Microsystems, Inc. in the U.S. and other 
countries.  The Java technology is owned and exclusively licensed by 
Sun Microsystems, Inc. 
 
Microsoft, Windows, Windows NT, Project and the Windows logo are 
trademarks of Microsoft Corporation in the United States, other 
countries or both. 
 
Rational Unified Process and Rational Rose are trademarks of Rational 
Software Inc. in the U.S. and worldwide. 
 
Other company, product and service names may be trademarks or 
service marks of others. 
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Comments 
Comments, criticisms, suggestions or any other feedback is welcomed.  
Please send email to the address below: 
 
mracmny@gmail.com 
 
 
 Copyright Andrew Moncrieffe 2001-2005 
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Introduction 
 
Though not a recent innovation strictly speaking, object-oriented 
development is now enjoying immense popularity.  This popularity has 
been bolstered by the availability and maturity of object-oriented tools 
such as languages and environments.  This popularity has also been 
aided by the presence of the World Wide Web. 
 
At the same time, more and more corporations are faced with the 
challenging problem of integrating diverse platforms, as they seek to 
gather critical information for client and decision support systems.  As 
a result, we focus not only on the elements of the object-oriented 
methodology, but also on how to integrate non-object-oriented 
systems into object-oriented development efforts.   
 
The use of the World Wide Web (and related technologies) as a 
delivery medium for computing has caused a major shift in how 
applications are designed and deployed.  In addition to developing 
object-oriented systems, more and more corporations are developing 
distributed systems as well.  Many products have come to market, 
based on this paradigm shift.  It is important then, to extend the 
discussion of object-oriented development to include component based 
development. 
 
Even with all of these advancements, the old adage still holds true:  in 
order to know where you’re going, you must know where you’ve been.  
With that in mind, a brief exploration of the evolution of software 
engineering is in order, to give some insight into why object-oriented 
development evolved (and from what) in the first place. 
 
In our world today, we all want everything yesterday.  Development 
projects are much the same.  In many cases, we are faced with 
management and market pressure to deliver systems ASAP, which 
means yesterday.  Regardless, we need to develop sufficient 
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understanding of the fundamentals before we apply to our analysis 
and design efforts.  To that end, we discuss in some detail, the 
formalities and theories behind the activities required to develop 
object-oriented software and follow that discussion with application to 
a class example.  The “formality” will provide a basis that is somewhat 
portable.  Languages that support object-oriented development may 
have different syntaxes, but the fundamentals should apply, regardless 
of language. 
 
In a similar vein, it is important to make sure we agree on the 
semantics of the words we use.  Many people refer to systems as 
object-oriented.  However, as we will see, not all “object-oriented” 
systems are indeed object-oriented.  We examine what it means to be 
object-oriented.  There are similar issues with the terms “analysis” and 
“design”.  In some cases, we’ve used those terms for years, without 
stopping to consider exactly what we’re doing in each case.  As before, 
we need to have the same understanding of the meanings of the 
words we’re using, in order to prevent ambiguity and 
misunderstandings.  
 
As with other paradigms, productivity has been and continues to be an 
issue.  One of the requirements for acceptance is how quickly 
developers et al “get up to speed”.     
 
Like anything else, to obtain the most from object-oriented paradigm 
and methodologies, there must be a basic understanding of the 
concepts.  This necessitates viewing problem-solving in a completely 
different way than one might be used to.  In some cases, it will require 
learning completely new languages, in addition to the new concepts.   

History 
To put all of this in the proper context, a brief history lesson is in 
order.  In the beginning, there was the mainframe, and it was good.  
It was also huge, requiring its own room, complete with specific 
cooling mechanisms.  In one sense, programmers were at the mercy 
of the mainframe, as at this time, the interactions between 
programmers and the mainframe were based on the language of the 
mainframe, i.e. zeroes and ones.  Imagine how difficult it must have 
been to create a trivial program, let alone anything complicated.  The 
I/O devices were rudimentary at best.  Computer programs involved 
directly submitting programming instructions via switches on a 
rudimentary panel (or panels).  This was the interface to the computer 
– no mice and keyboards.  The programs were essentially setting or 
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re-setting switches on or off, translating into commands for the 
computer.  Of course, we now have the advantage of decades of 
improvements on computing, but this is how it was done in the 
beginning.   Just think of how “interesting” it must have been to code 
and debug a program back then, with no monitors, keyboards, mice, 
IDE’s (Integrated Development Environment) etc. 
 

 
Fig 1.1 Early computer programming 

Though primitive and obviously tedious, this method allowed 
programmers to program the computer to solve problems.   Prior to 
this, they were not able to employ and leverage computing solutions.  
It is also clear that with this level of sophistication, the computer 
programming methods were only suitable for solving relatively simple 
problems.  As you can imagine, this method would not (and did not) 
scale well as problems became more complex.  Thus, over time, the 
industry realized that another paradigm, or way of thinking, was 
needed, because the problems that were being presented were 
becoming increasingly complex, outstripping the capabilities of the 
solutions (and programs).   
 
This led to the introduction of first-generation languages (1GL), such 
as COBOL1.  These languages provided a more easily adapted (for 
humans anyway) interface between humans and the computer.  This 
interface was the high-level, text based language.  This also meant the 
advent of compilers and interpreters.  These were programs that 
would accept text files with each line having an English-like structure 
and translate it into binary code, which the computers understood.  
This allowed for an order of magnitude leap forward in terms of the 
complexity of the problems that could now have computing solutions.   
High-level languages also gave programmers the ability to declare 

                                                 
1 Common Business Oriented Language 
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variables.  A variable represents a location in memory.  High-level 
languages allowed programmers to refer to locations in memory by 
symbolic names.  This made it easier to manipulate memory using 
meaningful names and not being limited to manipulating memory 
addresses directly all the time.  We take these things for granted as it 
is commonplace now.   At the time, it was a significant leap forward.     
 
High-level languages evolved to second-generation languages (2GL), 
which added the ability to subdivide programs into subroutines or 
procedures.  This was the advent of procedural languages.  The arrival 
of the subroutine meant that “divide and conquer” could be applied to 
larger problems, some of which may have been prohibitively large 
before.  This went a long way with regard to the complexity of 
problems that could now be effectively solved.  These constructs 
allowed hierarchical decomposition of problems into more manageable 
components, each of which could be further subdivided.   
 
Hierarchical decomposition is also termed “algorithmic decomposition”.  
It is the cornerstone of the top-down design methodology that so 
many of us were taught in our beginning courses in Computer Science.  
With hierarchical decomposition, complex problems, orders of 
magnitude greater than undertaken (and solved) previously, were 
being dealt with, somewhat more routinely.  This became more 
commonplace as the procedural paradigm evolved further.  Another 
effect of this division of labor was the utilization of modularity in 
computing.  Sections of a program’s code (subprograms) could be 
used, and re-used.   
 
Further evolution saw the progression to third-generation (3GL) and 
fourth-generation (4GL) languages.    As they evolved, high-level 
languages provided other constructs, such as data types.  A language 
defined a set of types that were considered primitive because they 
were inherently supported by the language.  This meant that 
programmers could choose individual types that were appropriate for 
their programming efforts.  They could decide that they needed 
integer numbers only for some value and once this declaration was 
made, the compiler would take care of the amount of memory that 
needed to be allocated for that particular type.  This freed the 
programmers from such tasks as well.  Languages also allowed users 
to create their own data types by combining and/or renaming the 
primitive types.  By utilizing abstract data types (ADT’s), users are 
able to define types that were abstractions of elements of the 
problems they were trying to solve.  The programmers could use 
language elements from the requirements, making their code easier to 
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understand and the solutions easier to conceptualize.  These allowed 
the aggregation of primitive types (i.e. integers, characters, etc.) in a 
way that was more meaningful to human designers and coders.  It 
also allowed for more readable and organized code.  Examples of user-
defined types are structs in C, records in Pascal, etc.  This progression 
also saw the appearance of support for modular programming and 
data manipulation. 
 
So, if procedural programming was so great, why was there a new 
paradigm introduced, i.e. object oriented development?  Why was this 
new paradigm invented in the first place?  What problems, existing or 
perceived, were the inventors and designers attempting to solve? 
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Chapter 1 
 
Introduction to Object-Oriented 
Analysis, Design and Programming 
Object-oriented analysis, design and programming evolved to address 
shortcomings in other methods of software development.  As more 
complicated problems were undertaken, the early methods of software 
development were proven to be insufficient.  The object-oriented way 
of thinking evolved to help in this area.  
 
This chapter introduces the fundamental concepts of object-oriented 
analysis (OOA), design (OOD) and programming (OOP).  It also 
describes how object oriented languages differ from procedural 
languages. 
 
The text is titled “Object Oriented Analysis and Design”.  Our main 
concern in this chapter will be the concepts, tools and guidelines of 
object-oriented methodology.  We will explore the analysis and design 
activities as they relate to the overall object-oriented system 
development lifecycle.  However, in order to do this, we must establish 
the context in which we will interpret various terminologies.  So, to 
paraphrase, in order to know where we’re going, we have to know 
where we’ve been. 

Evolution of Software Engineering 
Computers and Computer Science has now been around for a while.  
We utilize various tools and techniques on a daily basis, taking some 
things for granted.  In order to put object-oriented development in the 
proper perspective, we should look briefly at what led to the 
development of object-oriented approaches.  
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Procedural Language Issues 
Here are some general issues with procedural languages.  Please note: 
these are not absolute, and are thus open to dispute.  Why?  The 
answer is procedural programmers have attempted, with varying 
levels of success, to deal with these issues, within the constraints of 
the particular language, environment and approach.  Some have been 
more successful than others due to the particular language and the 
“best practices” that have been invented to reduce some of these 
issues.  We will highlight three of these, as follows. 

 
1. Programs (consisting of subroutines and modules) have 

unrestricted access to shared (common) data.  Procedural 
languages have a separation between data and the procedures 
that manipulate the data.  So encapsulation, with regard to data, 
(i.e. the concept of “private” data) is not robust for procedural 
languages.  Even if there is data in a record (in Pascal) or a 
struct (in C), the data in these structures is publicly accessible, 
meaning it can be assigned to any other variable of the 
appropriate type and similarly, any variable of the appropriate 
type may be assigned to it.  There is no access restriction on this 
data, even though it is obviously important to the overall 
structure.  In addition, the data could be remotely manipulated 
(via pointers, etc.). 

 
 

Memory
(Non-protected, available to all  subroutines)

SubRoutine A SubRoutine B SubRoutine C

Memory interactions

 
 

Fig 1.2 Shared memory access in typical procedural languages 

2. Code reuse, except for copying the code of particular procedures 
and modules, was largely un-realized.  
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3. Programmers were unable to apply concepts based on elements 
present in real life, such as leveraging the relationship 
hierarchies between items, whether data elements or algorithms. 
They could create “static” types to represent items in the real 
world, but that’s where it stopped. 

 
 

Memory
(data)

SubRoutine A
.
.

SubRoutine Z

Object 1

. . .

Memory
(data)

SubRoutine A
.
.

SubRoutine Z

Object 1

Memory
(data)

SubRoutine A
.
.

SubRoutine Z

Object 1

 
Fig 1.3 Memory access with objects 

 

Object Oriented Development 
Object-oriented development has been around since the 1960’s.  
Object-oriented languages are not new.  The concept of the “object” 
was first introduced in Simula67.   Simula was developed for use in 
creating simulations of real-world systems.  Many of these systems 
were highly complicated, involving many moving parts.  Simula 
introduced programmers to objects and classes.  This makes Simula 
very important in our current discussion.   Objects in Simula were 
allowed to have their own behavior and data its objects represented 
real (i.e. physical) objects.  
 
Object-oriented development has recently become very popular in IT 
shops.  In fact, this approach has probably become more widely 
adopted due to its close association with Web development (primarily 
due to Java being object-oriented). 
 
Why has there been this (relatively) slow adoption?  There are many 
reasons, a few of which are as follows:  There’s a significant amount of 
existing and fully operational software that is not based on object-
oriented development methodologies or use object-oriented 
languages.  This software is also, in many cases, absolutely mission-
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critical, in addition to relatively reliable.  In addition, there’s much 
more available expertise and familiarity with procedural methods and 
languages.  This is related to the point above.  We also have to factor 
in organization’s reluctance to change.  This change sometimes 
involves, among other things, significant retraining/learning curve of 
new paradigm for existing resources and management.  This is 
compounded by the opportunities for misunderstanding that exist 
regarding object-oriented methodologies. 

Comparison of Procedural and Object-
Oriented Methods and Languages 
Smalltalk appeared after Simula.  Smalltalk came along in the 1970’s.  
It is a pure object-oriented language as every facet of the language 
uses objects.   For example, even types that are primitives (non-
object-oriented) in other languages, are represented by objects in 
Smalltalk.  As a result, it is impossible to write a program in Smalltalk 
that is not object-oriented.   
 
C++ was developed after Smalltalk.  Although Smalltalk existed before 
C++, C++ is credited as being the first mainstream object-oriented 
language.  C++ maintains backward compatibility with C.  
Unfortunately this means, it is possible to write non-object-oriented 
C++ code.  As a result, while C++ does provide native object-oriented 
constructs in the language, it is not a pure object-oriented language. 
 
Java (from Sun Microsystems) was originally designed for consumer 
electronics such as set-top boxes.  At its origin, it was called Oak.  Oak 
was not a commercial success for Sun.  Oak was based on C++ to the 
extent that it kept the most important aspects of that language and 
discarded the most troublesome.  It was also designed with portability 
and security in mind.  As a result, pointers (among other items) are 
not offered in Java.  With the advent of the World-Wide Web, Sun 
renamed Oak Java and created the HotJava browser.  Java 1.0 was 
officially released in 1996.  Some in the industry argue that since Java 
has non-object oriented primitive types, it is not a pure object-
oriented language either. 
 
In addition to these, Microsoft’s suite of object-oriented development 
languages now includes Visual Basic.Net and C#, both of which 
provide object-oriented features. 
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Object-Oriented Analysis, Design and 
Programming Explained 
Now that we have an understanding of the “why”, let’s go further and 
look at some specific terminologies.  In this text, we will discuss 
object-oriented analysis, design and programming.  Let’s look at each 
one individually. 

Analysis 
What is meant by Analysis?   Analysis is one of the elements, i.e. 
phases of an overall software development process (lifecycle).  In 
Analysis, we create the high-level models of the system, based on 
requirements.  These models are based on an understanding of what 
functionality the system is to provide.  From these requirements, we 
are expected to develop a system that provides all of the necessary 
functionality.  Indeed, we are expected to produce a system that 
meets the users’ expectations of more than just functionality. 
 
The analysis effort involves taking functional requirements and 
developing a depiction (model) of the system.  For object-oriented 
development efforts, this means preparing an object-oriented 
decomposition that satisfies the requirements.  The activities here help 
transform the requirements of the system into a design that can be 
realized by software.   
 
Strictly speaking, in Analysis, we are not concerned with 
implementation details, i.e. how the system will be implemented.  
Rather, in Analysis, we need to focus on the functional aspects of a 
system, i.e. the information conveyed by the functional requirements.  
As we will see, functional requirements are not the only requirements 
that may exist for a system. 
 
In Analysis, our goal is to “digest” the requirements and produce a set 
of documentation on which to base the design.  Analysis 
documentation reflecting the functional aspects of the system, 
provides a static view of the system (more on this later).  The 
activities of analysis help transform the requirements of the system 
into a design that can be realized by software.  The models of analysis 
are at a level of abstraction above the physical implementation of the 
system.  The level of abstraction is such that the models could be 
applied equally well to many different platforms and architectures.  
Analysis ignores the architectural constraints of the system.  The 
purpose of Analysis is to ensure that some aspect of the system 



Object-Oriented Analysis and Design  22 

X52.9267-001  Not for Commercial Use   

satisfies each functional requirement.  For object-oriented analysis, 
this documentation will include class diagrams, which show the object-
oriented decomposition. 

Requirements 
A requirement is a description of a feature of a system, with systems 
typically having many features.  An example of a requirement is a 
description of the functionality to be provided by the system 
(functional requirements).  Another example is a description of the 
constraints under which the system must operate (non-functional 
requirements).   
 
In general, a system’s requirements are the set of documentation (of 
one sort of another) that sufficiently specifies the functionality and 
operations of the system.  Requirements may be grouped into two 
categories, functional and non-functional requirements.  

Functional Requirements  
Functional requirements are the most popular, by far.  At some point 
or another, it is very likely that we have received functional 
requirements2.  Indeed, some of us, at one point or another, may have 
created functional requirements as well.   
 
Functional requirements describe the actions of the system, i.e. the 
functionality to be provided by the system.  These requirements 
typically describe the input to and the result of these actions.  Another 
way of saying this is that the functional requirements describe how the 
system should behave in response to various inputs, whether from 
users or other systems.  Given this, functional requirements include 
(but are not limited to) use-cases.   
Use Cases 
A use case3 is a description of an interaction between users and the 
system (the term users in the context of a use-case includes people 
and external systems).  This interaction between the user and the 
system is called a scenario.  Each use-case has a primary (i.e. 
positive) scenario and could have many alternate scenarios that could 
cover areas such as what to do when exception conditions are 
encountered in the execution of the primary scenario.  

Non-Functional Requirements  
As we mentioned before, in addition to the functional requirements 
outlined above, there are other requirements that must be taken into 

                                                 
2 The functional requirements are also used to develop the functional specifications of a system. 
3 Use cases are reviewed in more detail in Appendix 1. 
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consideration when constructing a system.  These, as a group, are 
termed non-functional requirements, as they specify system features 
other than functionality.  Non-functional requirements represent 
expectations or constraints that affect the system’s operation, not 
what functionality it provides.  These requirements include elements 
such as environmental constraints, performance, usability, availability 
(robustness, reliability, redundancy, etc.) and security.  There are also 
requirements that specify hardware and installation/deployment.  As 
with functional requirements, various forms of documentation may 
comprise the set of non-functional requirements for a system. 

Design 
Practically speaking, it is difficult to examine Design4 completely 
separately from Analysis as they are tightly coupled.  In practice, they 
are not like the “waterfall”5 model would suggest.  In the “waterfall” 
model, each phase6 of a development project is completed before the 
next one is started.  In fact, phases of a development project tend to 
be more iterative, which does add to the project management 
challenge.  Indeed, in many cases, the design activities occur almost in 
tandem with those of analysis. 
 
In the Design phase, we take the high-level models from the Analysis 
(class diagrams, etc.) and make them more concrete by factoring in 
the environment, constraints, non-functional requirements, cost, time-
to-market, etc.  The output of Design is a set of models that are the 
basis for writing code.  Design is a step further along toward 
implementation.   
 
In Design, we are specifying how the elements of the system that 
provide the functionality and satisfy constraints (non-functional 
requirements) will be implemented.  In the Design phase, we refine 
and add more detail to our analysis models.  We also try to depict the 
behavior of the system at run-time, via various diagrams that capture 
how the system as a whole (or pieces) behave over time and what 
interactions exist.  We are able to do this because we have more 
information at our disposal, having gone through analysis.  We make 
decisions such as which technologies will be used, what platforms will 
be used, etc.  No doubt, these decisions will be heavily influenced by 
our non-functional requirements.   

                                                 
4 Design is discussed in Chapter 6. 
5 “Waterfall” refers to the way projects are typically depicted in project plans, i.e. divided into sequential 
project phases where one phase is completed before the next phase begins 
6 A phase of a project represents a major unit of work for a project and is comprised of individual tasks 
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Object-Oriented Capabilities and Benefits 
Benefits 
Obviously, given the progression of procedural languages, from 1st 
generation to 4th generation languages, there are many proponents, 
users and uses for procedural languages.  However, these 
shortcomings, are real and have far-reaching effects which grow in 
proportion to the size of the problem to be solved and many would 
also argue in proportion to the size (and number) of the teams 
participating in developing the solution.   
 
Let’s look at unrestricted access to shared memory as an example.  
Two subprograms need to manipulate data (not local to each 
subprogram).  Each subprogram has the ability to read and write data, 
thereby changing values in that particular data area.  However, there 
are no restrictions on which memory areas are accessible and which 
are not.  Errant code in one sub-program may overwrite the memory 
area or areas used by the other, unbeknownst to it.  This is different 
from just changing the value of global data. 
 
If you extend this simple example by assuming teams of programmers 
would be participating in the problems solution, then you can see that 
problems such as this could lead to many hard-to-find bugs in the 
software. 

Capabilities 
The quest to find ways, i.e. development methodologies and 
languages, to deal with issues such as these led to object-oriented 
development.  The inventors of OO sought to improve the overall 
process of producing defect-free, robust code.  Many of the issues 
listed above were thought of as weakening the ability to produce 
defect-free code.  In addition, there were processes developed, which 
“wrapped” the OO paradigm to further guide developers in creating 
object-oriented software. 

Basic Concepts of Object-Oriented 
Development 
In object-oriented way of thinking, systems are comprised of 
collaborating “objects”.  Each of these objects “knows” what it has to 
do – it has a clear and distinct purpose, in addition to a clear and 
distinct lifetime.  “Objects” are created as needed (in an orderly 
fashion) and provide a service through a well-defined interface.  In 
addition, they are destroyed in as orderly a fashion as that in which 
they were created. 
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Briefly, in abstract terms, an object is a tangible entity that exhibits 
some well-defined behavior, has an overall and specific purpose, has a 
definable state and has a particular identity.  Each of these will be 
explored further.  An object also includes its data (attributes) and the 
means to manipulate this data (methods).  Objects are also separate 
and distinct from each other.   
 
Thus, object-oriented thinking (and thus, object-oriented 
development) is based on thinking in terms of objects and their 
interactions with each other.  The overall methodology is based on 
recognizing and providing support for the following areas: 

• Abstraction 
• Hierarchical relationships 
• Encapsulation  
• Modularity 
• Persistence 

 
In order for object-oriented development to be useful, these elements 
(present to varying degrees in procedural languages) must also be 
present in object-oriented languages.  As we progress, we’ll explore 
how objects-oriented development addresses each of the “procedural 
language” issues listed earlier, using these elements. 

Definitions 
Following from above, Object-Oriented Analysis (OOA) is an analysis of 
the requirements that is based on object-oriented thinking.   This is an 
analysis that yielded the object-oriented decomposition, as opposed to 
the top-down hierarchical decomposition of structured analysis.  
Similarly, Object-Oriented Design (OOD) is design that is also based 
on object-oriented thinking.  In the design phase, we are concerned 
with making the models developed in the analysis phase more 
concrete and refined, ready for development.  Object-Oriented 
Programming (OOP) is the development of programming code based 
also based on object-oriented thinking, but also uses an object-
oriented language and environment (C++, Java etc.). 
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Sample Project 
A picture is worth a thousand words.  As an accompanying thought, an 
example is worth much also.  So, as we progress through each of the 
10 sessions, we will apply the knowledge in gained thus far to 
analyzing a set of requirements and designing a solution.  As this is 
not a programming course, we will stop short of implementing the 
solution.  However, many of the decisions that we will need to make in 
our design stages are dependent on the target platform(s).  We will 
look at our design decisions in the context of different architectures, to 
see what influences are present.  Whenever assumptions are made 
(and there will be some), we will clearly identify them.  The actual 
exercise will be introduced in the next chapter. 
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Chapter Summary 
• Analysis is the activity of taking the functional requirements and 

creating a model of the system.  Object-oriented Analysis takes 
the functional requirements and produces an object-oriented 
decomposition (unlike structured decomposition). 

 
• Design is the activity of specifying how to implement the 

elements of the system that provide functionality and satisfy 
constraints.  Design takes the high-level models from Analysis 
and makes them more concrete by factoring in non-functional 
requirements as well. 

 
• A requirement is a description of a feature.  Functional 

requirements describe the actions of the system.  Non-functional 
requirements reflect system constraints other than functionality 
such as performance, usability, etc. 

 
• Object-Oriented Programming is the activity of creating an 

object-oriented program using an object-oriented programming 
language. 

 
• Object-oriented methodology is not new.  It has been around 

since the 1960’s, starting with Simula67. 
 

• The object-oriented methodology is based on recognizing and 
providing support for Abstraction, Hierarchy, Encapsulation, 
Modularity and Persistence. 
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Exercises 
1. Based on your experiences, list any additional shortcomings of 

the procedural approaches to system development 
 

2. Define and give examples of abstraction, modularity and typing 
in the context of procedural development 
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Chapter 2: 
Classes and 
Objects 
 
Classes and Objects 
Classes and objects are central to anything prefaced by the term 
“object-oriented”, which, of course, includes object-oriented analysis, 
object-oriented design and object-oriented programming (OOA, OOD, 
OOP).  In addition, as we will see later, the understanding and correct 
choice of what should (or shouldn’t!) be a class is similarly central to 
having a good object-oriented design. 

The Meaning of the Word “class” 
As you probably have guessed, based on your prior understanding and 
usage of the word, a “class” is a group of items based on a set of 
shared and similar characteristics, which are exhibited by all members 
of the group. The characteristics of the class determine the expected 
behavior and features of its members.  A class may also (loosely) be 
thought of as a set of elements.   
 
There are some obvious parallels between set theory and the definition 
of a class.  In set theory, we have sets, subsets and elements.  Sets 
and subsets would most closely correspond to classes and subclasses, 
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respectively.  An element of a set would most closely correspond to an 
object or instance of a class78.   

Identification of Typical Classes  
Before we can create an object-oriented model of a system to be 
constructed, we must identify what specific building blocks we’ll use.  
These building blocks are the classes that will be involved in our 
system.  The selection of classes is critical to our progress.  Let’s 
examine how we’ll do this. 
 
Let’s define a class called “Humans”.  Since, by definition, a class 
represents a grouping where all elements share characteristics, we 
would expect that our class Human to have characteristics (features 
and behavior) such as: 
Representing all items considered human 
Oxygen used for breathing 
High degree of intelligence9 
Ability to communicate 
Ability to interact via our 5 senses 
Etc. 
 
It is clear that this is not an exhaustive list of human characteristics. 
 
Let’s define a class called “Automobiles”.  As above, membership in 
this class could be defined by the following: 
Having a means of propulsion, such as an engine 
Having a steering mechanism 
Having a braking mechanism 
Having accommodation for the driver 
Having a mechanism to transform the output of the engine into 
movement (forward and backward), i.e. transmission, propeller shaft, 
differential(s), etc. 
 
Obviously, again, this list of characteristics is not exhaustive.  Equally 
obvious is the fact that these characteristics are very high-level 
characteristics.  There are specialized versions of automobiles that 
exist – cars, trucks, construction equipment, farm equipment, etc.  
They can also be further specialized, i.e. for cars we could have 
                                                 
7 In case you were wondering, procedural languages just have no class. 
8 This parallel between sets and classes is not absolute.  For instance, with classes, there’s nothing that 
parallels the intersections, unions and complements.  However, the analogy of a set is a useful one in 
attempting to understand the relationship between objects and classes. 
 
9 May be an arguable point for some. 
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sedans, coupes, etc.  However, you will notice that all of these, in 
general, share the high-level characteristics outlined above. 
 
Let us think about the class “Computers”.  Such a class (see Fig 2.1) 
would be a very large one covering all computing devices.  We would 
expect a member of the set of Computers to be a computing device, 
allow inputs, return outputs, have the ability to be issued 
programming instructions, have the ability to execute programming 
instructions, etc.   This could be visualized as follows: 
 

Laptop

PowerMac G3

iMac

iMac

Minicomputer

VAX
IBM AS/400 Cray Supercomputer

Computers

Mainframes
Mini/

MidRange
Computers

Personal
Computers

SuperComputers

IBM 37XX
Generic Mainframe

PCTower

Handheld
Computers

Other
Computing
Devices

PDA

 

Fig 2.1 Class "Computers" 

This diagram shows the class “Computers” and some members of the 
class.  The class is large enough to be subdivided into additional 
classes (subclasses).  Each of these classes is also large enough to be 
subdivided.  In any case, some of the members of the classes are 
listed.  Each member of the subclass is also a member of the class 
“Computers”. 
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Modes of Transportation

 
 

Fig 2.2 Class “Modes of Transportation” 

Class Semantics 
The description of a class, which outlines the behavior expected of 
each of its members, is, in effect, a contract between the class (and its 
designer(s)) and the people that interface with its members.  A class 
may also be described as a blueprint for (and of) its members.  Let’s 
put this another way.  When a class is defined, you are describing a 
set of attributes and behaviours that each and every member of that 
class will share.  You should be able to predict what a member of a 
particular class will be able to do, based on the definition of the class.  
The phrase “what a member of the class will be able to do” is due to 
the semantics of the class.  The semantics are the rules defined in 
each class and followed explicitly by each member. 
 
In the prior section, we gave examples of classes and discussed what 
characteristics members would have.  These characteristics are 
dictated by the semantics (or rules) of each class.  As designers, we 
will define classes and rules. 

So, What is an Object? 
Above, we’ve repeatedly used the term “members” of a class.  What 
are the members of a class?  If we go back to our two examples 
earlier, the members of the class Human would be people, each one of 
which possesses human characteristics, i.e. features and behavior.  
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Each person (individual) exhibits the general set of characteristics that 
we’ve described and that are exhibited by all humans. 
 
For automobiles, the members of that class, for the purpose of this 
discussion, are specific cars, trucks, etc.   

Objects as Class Instances  
Each member of a class is termed an instance of the class.  An object 
is an instance of a class.  From our earlier discussion, an instance of a 
class is a specific item that is representative of the class.  Another 
perspective is to say that an instance of the class is one item that is 
completely and accurately described by the class’ definition.  This 
definition, as mentioned above, can be viewed as a contract between 
the class’ designers and its clients (users). 

Identification of Typical Objects 
In the example above, we said the class Human could represent all 
people.  Each person would exhibit the general set of characteristics 
that apply to all human.  Each person could also be viewed as 
individual objects of the class Human.  The class Human would 
effectively be the “blueprint” for each of the person “objects” that 
exists at any given time. 

Object Features 
As a specific instance of a class, objects may be described as having 
the following attributes: 

Identity 
In order for us to use an object, we must be able to uniquely identify 
one object from another.  So, each object (instance of a class) must 
have a specific and unique identity.  If we use our example of class 
Humans, of which people are the members or objects, each person has 
an identity.  In many cases, fingerprints are used to verify someone’s 
identity.  Fingerprints are a universal and unique human attribute.  
There are other means of establishing identity as well, albeit not 
necessarily unique, such as a person’s name.  The social-security 
number is unique, but it is not universal. 

Behavior 
Each member of a class will exhibit the behavior outlined in the 
description of the class, based on the semantics of the class.  Thus, it 
will be “well behaved”, i.e. it will do what is expected, nothing more 
and nothing less.  The behavior of an object is also referred to as its 
functionality. 
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State 
As a specific instance of a class, an object will have a particular state 
at a given point in time.  The state of an object is determined by 
assessing various factors (values or attributes) at that specific point in 
time.  For example, the state of a car at a given point in time may 
involve assessing factors such as how much gas is in the tank, the 
condition of its brakes, tires, engine, etc.  The state of an object is 
dynamic – it changes as time goes on. 
 
So, an object is a specific instance (member) of a class, with the class 
providing the blueprint. 

What Makes Languages and Methods 
Object-Oriented? 
A language is considered object-oriented if it supports the major 
elements of the object-oriented paradigm.  This means is provides 
language constructs for Abstraction, Encapsulation, Hierarchy and 
Modularity.  Each of these is discussed below.  If a language doesn’t 
support one of these (typically inheritance), it is termed object-based.  
Languages such as C++ and Java support all of the attributes above 
and thus are termed “object oriented”.  Previous versions of Microsoft 
Visual Basic10 were “object-based”, as they did not fully support 
Hierarchy (as we’ll describe below). 

Procedural and Object-Oriented 
Language Comparisons Revisited 
Procedural languages support and facilitate the implementation of 
subprograms (procedures and functions).  These subprograms exist as 
a product of the decomposition of a problem into its sub-parts, i.e. 
successively refined subprograms (top-down decomposition).  Object-
oriented programming languages support (and facilitate) the 
implementation of classes, which are the products of the object-
oriented decomposition of a problem. 

Main elements of OO paradigm 
In Chapter 1, we compared procedural and object-oriented 
approaches.  We said that there were some advantages that the 
object-oriented approach had over procedural approaches.  We saw 
                                                 
10  The current version of Visual Basic includes full support for inheritance, thereby making it object-
oriented. 
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that using objects gets us out of the potential problems of shared, 
unprotected memory.  We also saw that objects are members of 
classes, which are groupings that we define.  These (and other) 
benefits are obtained by using the object-oriented approach. The 
object-oriented approach provides these advantages because of its 
inherent support for the following elements: 
 

1. Abstraction 
2. Encapsulation 
3. Hierarchy 
4. Modularity 
5. Persistence 

 
A description and example of each of these is below. 

Abstraction 
Whenever someone delivers something, i.e. draws you a picture – 
some sort of diagram or gives you a text document that doesn’t focus 
on the details, i.e. high-level, they are using abstraction.  With 
abstraction, we are able to categorize items (areas of a problem space, 
for example) into manageable chunks, each of which is easier to deal 
with than the whole.  We can then determine how these chunks 
interact to provide the entire solution.  Abstraction is one of the ways 
we deal with complexity on a daily basis.  An abstraction allows us to 
focus on the significant areas of a problem (or system), without 
focusing on all of the details of the problem (or system) all at once.  
This is what makes those “chunks” manageable.  We are able to 
visualize the problem more easily, as we are not trying to see 
everything at once, only the parts of interest and relevance. 
 
Using abstraction, we can identify the classes that we use to describe 
a system.  Each of these classes will have a semantics that govern the 
role of its objects in the overall system.  With abstraction, we can 
define these classes and include enough information, without having to 
include every possible bit of data for the class.   We’ll see more of this 
later. 
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Fig 2.3 Abstraction 

In this example of abstraction, we see the generic shape on the left 
that represents the shapes on the right.  Because of Abstraction, we 
can focus on a subset of the details of the shapes on the right.  The 
subset that we would focus on are those traits that are shared by all of 
the shapes on the right.  An example of such a trait is its perimeter11.  
Another example of such a shared trait is the area of a shape. 
 

                                                 
11The set of shapes on the right-hand side of the diagram should more accurately be called 2-dimensional 
shapes.  This makes the use of perimeter more appropriate. 
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Represents

 
Fig 2.4 Abstraction 

In fig 2.4, we see another example of abstraction.  The toy horse on 
the left is a greatly simplified (not the least of which is that it is 
inanimate) view of a real horse, as pictured as right.  It has some 
features of the real horse (mane, tail, head, four legs, two eyes, etc.  
It obviously does not many of the features of real horses, but, at this 
level of abstraction, provides an adequate representation12. 
 

                                                 
12 It is critical to identify the appropriate level of abstraction.  In this case, given the expected audience and 
use of the rocking-horse, these features it does share, though few, are adequate.  Many factors will have to 
be considered when determining the correct level of abstraction. 
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Class Student {
~~~~~~~
~~~~~~~
~~~~~~~
~~~~~~~
}

Represents

 
Fig 2.5 Abstraction 

In this example, we are highlighting the fact that our abstractions will 
be captured as class definitions.  In these class definitions we include 
the common data elements and common operations that we need to 
capture.  As before, these have to be at the correct level of 
abstraction. 

Encapsulation 
Earlier, we described a class as a grouping of items based on a shared 
set of characteristics.  While accurate, we will add a few things to the 
definition. 
 
We discussed some of the shortcomings of procedural languages.  One 
of these was that we were unable to restrict access to areas of 
memory, meaning there could be unauthorized access to memory that 
we were expecting to use.  In addition, we discussed the 
implementation being open as well, with the possibility of major 
consequences to minor implementation changes.  
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In the OO paradigm, classes consist of data and the means to 
manipulate that data.  The class owns both of these items.  The data 
owned by a class may be referred to as its properties or attributes.  
The means to manipulate this data is via functions, collectively known 
as methods.  The functionality provided by these methods determines 
the behavior (as above). 
 
In addition, how these methods are implemented, is kept on the 
“inside” of the class, i.e. hidden from the outside.  In addition, the 
attributes of a class are not necessarily visible from the outside either, 
so it is more difficult for memory to be overwritten or values changed 
inadvertently. 
 
We may extend our earlier examples of automobiles as follows: 
 
Let’s introduce a class Car.  The attributes of class Car may be as 
follows: 
Amount of Fuel 
Speed 
Etc. 
 
Some of the operation of the Car class might be as follows: 
Go Forward 
Stop 
Go Backward 
Engine on 
Engine off 
Steer 
Etc. 
 
Most drivers do not know or care how, or what makes a car go 
forward, backward, stop, turn, etc.  They just want to know that it 
does, and that it does so consistently, and according to expectations.  
The interface between humans and cars consists of the steering wheel, 
pedals, gearshift lever, ignition key, gauges, etc.  For our example, it 
is via this interface that the commands to go forward, etc. will be 
delivered.  The ability to “hide” how the car actually implements the 
command to go forward, backward, etc. is provided by encapsulation. 
 
Similarly, during the interaction between classes (and objects), there 
should be no need to access the implementation of a method. 
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To provide encapsulation, OO languages provide control over the 
visibility of attributes (data) and methods13.  We will explore the 
access levels and what they mean later on. 
 
The view of a class, from the “outside”, is termed its interface.  This is 
the set of the publicly accessible operations of the class14. 
 

Why is Encapsulation Important? 
The key concept in Encapsulation is that components (i.e. classes, 
modules, etc.) all have information that is on the inside and is kept 
hidden from outside eyes.  The areas that are hidden may be those 
that might be changed more frequently than the external view needs 
to be aware of..  A data structure or specific calculation routine are 
examples.  Say we have a component that exports15 an operation 
Sort().  We may want to change the implementation of the Sort() 
routine to take into consideration different variables such as how large 
a set we’re sorting, what elements are to be sorted, i.e. in an array,  
as a dynamically linked list, etc.  Depending on these variables, we 
could use trivial, off-the-shelf algorithms or specially customized, 
complex algorithms.  The selection of the algorithm is not a detail that 
needs to be visible to users of the component.  In addition, if our 
Sort() operation needed other operations that were only used with 
Sort(), those should also be hidden.  With Encapsulation, both are 
hidden from view.  We are able to hide the implementation of 
operations, as well as complete operations, as necessary.  When you 
hide the implementation, this has a direct impact on reliability, as 
certain changes are now controlled. 
 
Given the capabilities of Encapsulation, the selection of which 
operations are exported is a critical activity.   
 

                                                 
13 The data is not considered local data even though it is inside an object.  Local data (and methods) are 
defined inside a subroutine or function.  In addition, those local elements are only visible inside that 
subroutine or function.  The term “local” is reserved for these items. 
14 Of course, this will also be the set of publicly accessible operations of all objects of this class also. 
15 Makes publicly available. 
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Interface Implementation

Due to encapsulation, the interface is public,
the implementation is private.  

Fig 2.6 Encapsulation 

Hierarchical Relationships 
In this context, Hierarchy represents a structure that is an ordering of 
items based on a relationship that is intrinsic to the structure. 
 
Before, we used the class Automobile to describe shared 
characteristics of a particular class.  We also mentioned that we have 
further specialized examples of automobiles.  For example, we have 
Cars, as a type of automobile, Sedans as a type of car, etc.  Each one 
is successively specialized, but they all share characteristics (features 
and behavior) of the initial class Automobile.  This is an example of 
inheritance. 
 

Inheritance 
There are two types of inheritance – single and multiple.  We will 
concentrate on single inheritance. 

Single Inheritance 
Think of your family tree and choose either the women or men in your 
family tree only.  Starting with your grandmother or grandfather, your 
family tree (a portion of it anyway), might look like this: 
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Fig 2.7 Inheritance 

 
You inherited traits, i.e. characteristics, from your grandparents.  Of 
course, each of them inherited traits from each of their ancestors 
successively. 
 
Let us look at another example – Printers: 
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Generic Printer

 
Fig 2.8 Inheritance 

 
Inheritance is an example of a class relationship.  Inheritance denotes 
an “is-a” relationship (unlike composition, to be discussed later).  The 
ability to say something is-a kind of something else implies 
characteristics and behavior, as before.  If we go back to class Human, 
we can extend the class and construct a class hierarchy as follows: 
 

Human

Female

Girl

 
 

Fig 2.9 Inheritance 

We can see from the diagram that Girl inherits from Woman and 
Woman inherits from Human, etc.  As a result, we would expect that 
Girls would share the characteristics of Women and humans. 
 
The root of our tree, i.e. the first class from which we inherit is called 
the superclass.  Each inherited class is called a subclass. 
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Multiple Inheritance 
The case where we inherit from more than one distinct superclass is 
termed Multiple Inheritance16.   If we added back the other half of your 
family tree, we would accurately see that you inherited traits from 
your mother and father, not just one (as implied in our example 
earlier).  So, you are a member of (is-a) your mother’s side of the 
family, just as you are a member (is-a) of your father’s side of the 
family. 
 

Mother Father

Child - inherits from both
 

Fig 2.10 Inheritance 

Aggregation and Composition 
Composition and Aggregation are other examples of hierarchical 
relationships.  Unlike inheritance (is-a), a composition or aggregation 
relationship is characterized by “has-a”.  Composition and aggregation 
express possessive, ownership or containment relationships.  This 
means, a container, such as a paper bag, can be modeled using an 
aggregation or composition relationship.   
 

                                                 
16 It should be mentioned that whereas support for inheritance is a requirement, support for multiple 
inheritance is not.  Indeed, there are object-oriented languages, like Java which do not support multiple 
inheritance.  Further discussions of this are in Chapter 6. 
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With Aggregation, in order for an object to be valid17, it is not 
mandatory to have all of the “parts” present.  With Composition, in 
order for an object to be valid, all of the parts are mandatory.  A car is 
a good example of composition, as follows: 
 
A car has (contains): 
An engine 
Transmission 
Seats 
Wheels and Tires 
Etc. 
 
In effect, a car is the sum of its parts, and cars have many parts.  
Obviously, we cannot say an engine is a car, or a transmission is a car, 
etc.  The appropriate way to characterize the relationship between 
cars, engines, transmissions, etc. is to say a car has an engine, has a 
transmission, etc.  In addition, a “valid” car is one that has all of the 
requisite parts. 
 

Engine Seats

Steering Mechanism Transmission

W heels and Tires Fuel System

A typical automobile (car, truck, etc.) is composed of
the followng components

Suspension System Etc.

 
 

                                                 
17 Valid refers to the abstraction.  If the semantics of the abstraction do not allow any missing parts, but call 
for an aggregate, then we would use Composition.  If the semantics call for an aggregate, with no rules as 
to missing parts, we would use Aggregation. 
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Fig 2.11 Composition 

 

 
Fig 2.12: A city 
 
A city is an example of aggregation.  With aggregation, the whole, i.e. 
the aggregate, is still valid whether the number of elements varies or 
not.  So, a city of zero, fifty, one hundred or one million residents is 
still a city.   
 

Why is Hierarchy Important? 
The support for Hierarchy has a direct impact on code reuse.  This is 
because we can directly leverage previously developed code, in the 
development of our system.  

Modularity 
Modularity is the ability to decompose or partition a system into a set 
of collaborating components or structures.  These structures could be 
one or more files that contain code.  A module is defined as a structure 
that has data and operations defined on that data.  In object-oriented 
development, a module could be one class, or a group of classes.    
 
Various languages support modularity.  In such languages, modules 
allow the definition of data that is visible throughout the module, but 
not visible outside the module.  In addition, they allow the control of 
operational visibility also.  This means some operations defined within 
the module will only be visible inside the module, not from outside.  All 
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object-oriented languages (and quite a few non-object-oriented 
languages) support modularity.  As we shall see later on, the notion of 
a “package” is also centrally related to modularity. 
 

Why is Modularity Important? 
Modularity is important for a number of reasons.  We can employ 
modular designs to leverage reusability.  For example, we can create 
modules that represent areas of the program that may be reused.  For 
example, we can create generic sorting modules, for instance.  By 
separating areas of our program’s functionality into modules, we can 
more easily reuse some of that functionality than if we did not use 
modules.  This is true for both object-oriented and structured 
approaches.   
 
With modularity, we are able to separate areas functionally dissimilar 
areas of our program, which yields greater clarity, reliability, etc. and 
associated benefits.  For example, we can group functional areas such 
as user-interface, input/output, data management, etc. into separate 
modules18.  While these modules will interact and have many 
interdependencies, the fact that they are separate will lead to overall 
system reliability, as we can develop, test and certify and maintain 
each separately. 
 
For our discussion here, these components correspond to classes and 
objects19.  As before, each object is a specific instance of a class.  An 
object is concrete, while a class is abstract.  So, even though we would 
decompose a system into a set of classes, it is the interaction of the 
objects, instanced from these classes that constitute the operational 
system.  The ability to have an operational system comprised of 
cooperating objects (at run-time) is due to Modularity. 
 

                                                 
18 Depending on the complexity of the system, it may be necessary to have many modules dedicated to each 
functional area. 
19 As we will see in chapter 8, the term “component” has a specific meaning as well. 
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Problem

Module E

Module B Module DModule C

Module F

Module A

Modular Solution

 
Fig 2.12 Modularity 

This diagram illustrates the modular decomposition of a given 
problem20. 

Persistence 
In general terms, it is critical to be able to preserve values between 
sessions, i.e. from one time of usage to another.  In object-oriented 
development we work with object (at run-time) and we need the 
ability to “save” the value of our objects from one session to the next.  
For example, when we create a word-processing document, we save 
the document, which translates the memory representation of the 
document into a representation of the document on some other 
storage device2122.  We are most interested in storing the current state 
of the document.  This includes the text of the document, in addition 
to any cosmetic changes styles we applied, etc.  When our word-
processing program loads our saved document, we need it to present 
our document in the exact state it was in when we saved it.  Being 

                                                 
20 The illustration of the modular decomposition does not include links between modules so as not to imply 
how the modules communicate.  A modular system will have cooperating modules, with various 
interactions and interdependencies.   
Whereas the definition of module is general enough to fit both object-oriented and non-object-oriented 
circumstances, object-oriented modules differ in structure that non-object-oriented modules. 
21 Storage devices may be disk drives, CD-ROM, etc. 
22 Serialization is another term used to describe translating from one form into another.  Typically, 
serialization does not describe how the data is persisted. 
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able to save and restore our documents state is fundamental to how 
we use programs such as word-processing programs.  Imagine having 
to complete every document at one sitting because there was no way 
to save incomplete work!  It is worth mentioning that the format of the 
saved document is outside the scope of the discussion.  Whatever the 
format is, we must be able to take a document saved in that format 
and do whatever we need to do to display a document ready for 
editing.   
 
This ability to save and restore state is also fundamental to object-
oriented development.  It is the state of an object that we are 
concerned with persisting.  The state of the object is dynamic and is 
based on the effects of various operations on the object that were 
invoked, up to this point23.  Object-oriented systems are composed of 
objects interacting at run-time.  If we end then resume a session, we 
need to have a mechanism that allows us to save the state of our 
objects at the end of the session and load our saved state at the 
resumption of our session. 
 
As we will see in Chapter 6, in our discussion of design, we may 
employ various methods to persist object.  The current crop of object-
oriented languages provides varying levels of built-in persistence.  For 
those with weaker support, we may employ additional methods to 
achieve full persistence. 
 

                                                 
23 We are limiting the effect on an object’s state to the execution of operations, as public data elements in 
objects are discouraged.  We discuss this further in Chapter 6. 
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Document in memory

Fixed media

Removable media

Save

Save

Optical  media

Save

 
Fig 2.13 Options for saving a document 

Benefits of OO Development 
Earlier, in the recap of Chapter 1, we discussed some of the drawbacks 
of procedural languages.  The features of the OO paradigm directly 
address these issues.  For example, Encapsulation allows the 
separation of the use of a procedure (method) and it’s implementation.  
With Encapsulation the designer (of the method) is given a tool to 
control its use and visibility.  Abstraction allows the use of words that 
reflect the real world that is being modeled.  Hierarchy allows the 
leveraging of relationships in a way that was not possible before.  In 
so doing, it promotes code reuse as well. 
 
From this chapter’s discussion, we can expect the following, based on 
the major features of the OO paradigm: 
 
Abstraction – the ability to create a realistic model, which will make it 
easier to render solutions, as these models are based on the language 
(and definitions) of the problem space. 
 
Encapsulation – the ability to identify data and methods, grouped 
together into one element (class), with the added ability to determine 
who has access to the data and methods. 
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Modularity – the ability to model an operational system based on 
cooperating object, closer to reality than the earlier hierarchical 
decomposition would allow. 
 
Hierarchy – the ability to take advantage of shared characteristics 
between groups of classes, adding further specialization (subclasses) 
as necessary. 
 
Persistence – the ability to preserve the state of objects across 
sessions 

 
As with most things, the correct application (or usage) of these items 
will determine how many of the apparent benefits you are able to 
enjoy. 

Interfacing with Non-Object-Oriented 
Systems 
In this chapter, we are seeing a new way of viewing the solution to 
problems (object-oriented vs. procedural).  However, in the real world, 
we are not always afforded the opportunity to “start over from 
scratch”.  In many cases, our solutions involve interfacing with existing 
systems such as mainframes. In other cases, we need to utilize data 
that resides in a variety of formats in various databases, files, etc.  As 
we develop our object-oriented toolkit, we will revisit these issues and 
discuss possible solutions. 
The elements of the object-oriented approach give us many 
alternatives.  For example, we could use Abstraction to create classes 
that represent (i.e. abstract or hide) the legacy systems.  With 
Encapsulation, the details of the legacy system would be hidden 
“behind” the definition of the class. 

Identifying Classes  
As listed before in the Analysis phase, we are attempting to discover 
classes and objects.  There are various approaches to doing this.  The 
key is that they are derived from the requirements of the problem 
domain.  Remember, the system we will ultimately design has to 
satisfy our requirements. 
 
In one example (Shlaer/Mellor), classes and objects usually come from  
Tangible things  Cars, telemetry data 
Roles    Mother, teacher 



Object-Oriented Analysis and Design  52 

X52.9267-001  Not for Commercial Use   

Events    Interrupts 
Interactions   Loan, meeting 
 
Another perspective (Ross), based on database modeling yields the 
following: 
People    Humans who carry out some function 
Places    Areas set aside for people or things 
Things    Physical objects 
Organizations 
Concepts 
Events 
 
Here is yet another set of sources for potential objects 
(Coad/Yourdon): 
Structure    Is-a/part-of relationships 
Other Systems External systems with which the 

application  interacts 
Devices 
Events remembered 
Roles played 
Locations 
Organizational units 
Subject Areas Higher level of abstraction: group of 

classes 

Behavior Analysis 
Another school of thought uses Behavioral Analysis, which is the focus 
on primary behavior as source of classes and objects.  This is closer to 
conceptual clustering as we are forming classes based on groups of 
objects displaying similar behavior.  Conceptual Clustering is the 
approach whereby classes are generated by formulating conceptual 
descriptions then classified according to the descriptions.  A derivative 
is to use classifications based on behaviors viewed as function points.  
A function point is one end-user business function.  A business 
function represents some kind of output, inquiry, input, file or 
interface. Thus, a business function represents any outwardly visible 
and testable behavior of the system. 

Domain Analysis 
On a larger scale, we also have Domain Analysis, which is an attempt 
to identify the objects, operations and relationships that domain 
experts deem important about the domain (of all applications).  This is 
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applicable to all systems in a domain, as opposed to some of the other 
approaches, which are more applicable to individual systems. 
 
Domain Analysis seeks to identify the classes and objects that are 
common to all applications within a given domain, such as securities 
trading, etc. 
 
Domain analysis helps by pointing you to key abstractions that have 
proven useful in other related systems. 
 
Some of the steps of Domain Analysis are as follows: 
 

• Construct models based on consulting with domain experts24 
• Examine existing related systems and represent using common 

format 
• Identify similarities and differences between systems by 

consulting with domain experts 
• Refine strawman25 to accomodate existing systems 
• DA may be applied vertically: across similar applications or 

horizontally: related parts of same application. 

Use-Case Analysis 
The previous practices depend heavily on the experience of the analyst 
(domain expertise).  With use-case analysis, this shifts to the 
experience of the end-user.  This practice may be coupled with our 
earlier approaches as well.   
 
As mentioned above, a use-case26 is a particular scenario that begins 
with some user of the system initiating some transaction or sequence 
of interrelated events. 
 
Users/domain experts/development team members enumerate 
scenarios fundamental to the system's operation.  These will 
collectively describe the system functions of the application (part of 
the requirements gathering phase). 
 
Analysis then proceeds by studying each scenario, outlining the 
objects that participate in each scenario, each object's responsibilities 

                                                 
24 Note: “Domain expert”: experienced user. 
25 A “strawman” is a model, prepared with the understanding that all details are possibly unavailable at the 
time of its creation. 
26 Use cases are discussed in more detail in Appendix 1. 
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and how objects collaborate with each other.  A clear separation of 
concerns among all abstractions is crafted. 
 
The scenarios captured in the use cases may also be used as the basis 
of system tests. 

Informal English 
In this practice, we write an English description of the problem then 
underline all nouns and verbs (Abbott).  The nouns represent 
candidate objects and the verbs represent candidate operations on 
them.  This is useful, because it forces the developer to work in the 
vocabulary of the problem domain.  However, it is not rigorous, 
because of the ambiguities in and impreciseness of the English 
language (verbs may be derived from nouns and vice versa). 

Structured Analysis 
Many of us are familiar with the process (and results) of structured 
analysis.  Many tools and methods support structured analysis.  The 
idea with starting with structured analysis is to reuse such artifacts by 
creating a “bridge” to the object-oriented way of thinking.   
 
 
Candidate objects may be derived from the following: 
External entities 
Data stores 
Control stores 
Control transformations 
 
Candidate classes may be derived from: 
Data flows 
Control flows 
 
Data transformations we assign as either operations on existing 
objects, or as the behavior or "agent" objects. 

Finding Key Abstractions 
Key abstractions are very important to our overall process.   A key 
abstraction is an abstraction that is to be included in our models and 
subsequent design.  There are potentially many candidate classes that 
may be reviewed.  Not all candidate abstraction s will necessarily 
become classes.  As we examine each one, we will keep those that 
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have merit, i.e. represent the real-world objects we want to model.  
These key abstractions are the abstractions that will become classes.   
 
The primary value of a key abstraction is that it gives boundaries to 
our problem - highlight things in our system relevant to our design.  
The identification of key abstractions allows us to be specific about 
behaviors, hence the notion of boundaries.  Key abstractions will 
always be domain specific, i.e. specific to the domain of the problem. 
 
The identification of key abstractions uses two mechanisms: discovery, 
i.e. obtaining the abstraction from the requirements, and invention, 
i.e. adding abstractions that were not explicit in the requirements.  We 
may recognize key abstractions through interactions with domain 
experts and review of the requirements.  If they talk about it, then it 
may be an important abstraction.  Through invention, we may add 
abstractions that are not part of the problem domain, but should be 
part of the solution.  Many of the abstractions identified out of 
invention are useful in design or implementation. 
 
One of the most powerful ways of identifying key abstractions is to 
look at the problem and see if there are any abstractions that are 
similar to the classes and objects that already exist. 

CRC Cards 
CRC cards are a simple, yet effective way of helping to understand 
how a particular candidate class would fit into your overall picture.  
CRC means Class/Responsibilities/Collaborators.   
 
A CRC card is an index card (typically 3inches by 5 inches).  With the 
name of the class written at the top of the card, on one side, list the 
responsibilities of the class.  On the other, list all of the other classes 
that are collaborators with this class. 
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Sample Project 

Here is our “problem”.  We will work through the following example.  

Requirements 
Design a program to manage student information based on the 
following criteria: 
 
There are three types of students: Typical, Faculty and Transfer.   
Typical students are regular college students, about which the 
following information is typically captured – Name, Address, ID and 
Major.   
Some students may also be faculty of the college.  In this case, what 
subject they teach is captured.  Members of faculty are also given a 
discount based on their years of service, 10% for up to 5 years, 20% 
for 6-10 years, 30% for more than 10 years.  Only faculty members of 
this college are eligible.   
In addition, some students may be temporary transfers from another 
college.  In this case, we need to know their home college and it’s 
address to be able to return their grades at the end of the semester. 
 
All students over the age of 55 are eligible for a 15% discount (in 
addition to other discounts if possible). 
 
Students may be full-time or part-time.  Full-time students are those 
with 10 credits or more.  Part-time students are those with less than 
10 credits. 
 
The current classes are as follows: 

• Abstract Algebra      4 Credits 
• Calculus       4 Credits 
• Intro to Computing     4 Credits 
• Advanced Computing     4 Credits 
• Object Oriented Programming Using C++  4 Credits 
• English       3 Credits 
• Spanish       3 Credits 
• Chemistry       3 Credits 
• Physical Education     1 Credit 
• Art History       2 Credits 

 
The college charges $100 per credit per semester.  
 
The current majors are as follows: 
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• Math 
• Computing 
• English 
• Chemistry 
• Undeclared 

 
Periodically, the college will add new classes and majors to these lists.  
Students may have at most two majors. 
 
The system must be capable of the following: 

• Adding a new student’s information 
• Searching and displaying a student’s information 
• Deleting a student 
• Changing/assigning classes and credits to students 
• Changing/assigning a student’s major 
• Changing/assigning a student’s type 
• Changing/assigning a student’s status, i.e. full-time or part-time 

according to the rules above 
• Producing reports as follows: 

Sorted list of full-time students (all information) 
Sorted list of part-time students (all information) 
Number of students of each type (typical, faculty and transfer) 
For each type of student, a sorted list of student names and 
addresses 
For each type of student, a reversed list of student names and 
addresses 
List of all students, their majors and number of credits 
A sorted list of all students based on their cost for the semester 

 
Notes: 

• The system will maintain student data in a relational database 
• The system should allow the entry of complete information at 

time of addition 
• Implement a simple, straightforward user interface27 
• Design for “real-world” use  - employ error handling where 

appropriate 
 

                                                 
27 We will discuss user interface objects in Appendix 2 
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Chapter Summary 
• A class is a group of items based on a set of shared and similar 

characteristics that are exhibited by all members of the group. 
 

• Each class has a set of semantics or rules that govern its 
behavior. 

 
• An object is an instance of a class. 

 
• Objects have identity, behavior and state. 

 
• Abstractions allow us to focus on the relevant characteristics of 

the real world object it represents.  It is a simplification. 
 

• Encapsulation allows us to separate the interface from the 
implementation. 

 
• Hierarchy allows us to leverage the similarities that exist 

between classes and enables use of previously developed code. 
 

• Modularity allows us to partition a system into a set of 
collaborating components. 

 
• Persistence allows us to preserve the values of objects. 

 
• We may use various techniques to identify classes such as 

Behaviour Analysis or Domain Analysis. 
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Exercises 
1. Create an example demonstrating each of the following: 

inheritance, composition, aggregation and association. 
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Chapter 3 
 
Class Structure  
We have now developed a basic understanding of the OO paradigm, 
i.e. way of thinking.  We will now go forward and delve more deeply 
into the details of classes and objects, by continuing our discussion of 
class structure and interactions. 
 
The definition of a class can be abbreviated as follows: 
 

A class is a structure that contains data and methods that 
manipulate that data. 

 
Data, in this definition, represents the data contained in a class, what 
we’ve also referred to as values, attributes or properties or fields.  
Methods are the functions (or procedures) that are defined within the 
class as members of the class (also referred to as member functions).  
Methods operate on the data defined in the class.  Methods are the 
only functions that directly operate on the data in the class without 
explicit permission. 

 “Design-time” and “run-time” Defined 
For us, “Design-time” refers to the activities during the Design phase.  
In the Design phase, some new classes may be defined, while those 
existing (as of the Analysis) are refined as necessary.  Class 
relationships are identified and exploited as appropriate.  At “run-
time”, we have objects collaborating to provide the functionality of the 
system. 
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What is Class Structure? 
Let us define a class that represents a general shape.  Class Shape 
would then be a generalization for all shapes, such as circles, squares, 
trapezoids, triangles, hexagons, etc.  Based on the definition above, as 
represented in pseudo-code, we can construct a very general class 
definition for Shape as follows28: 
 
In C#: 
abstract class Shape 
{ 
/* Data */ 
 
 double area; 
  
 
/* Methods */ 
 public abstract double CalculateArea()29; 
   /* no implementation */ 
} 
 
 
The attribute area is defined as a number.  For our purposes, number 
could be either integer or real (including double and long, depending 
on the size of our shapes 1).  
 
We’ve also defined a method CalculateArea(), which for our 
purposes, returns a value (of type integer), which represents the 
calculated area of our shape. 
 
As we said before, we intend to let class Shape be a generalization of 
all shapes.   
 
Let’s also see what this class definition would look like in two popular 
object-oriented languages: 
 
In C++: 
 
 class Shape{ 
 int area; 
 public virtual int CalculateArea()=0;  /* function 
     prototype only – no implementation */ 

                                                 
28 The examples are in pseudocode, C++, C# and/or Java. 
29 public, as used here, will be defined later 
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} 
 
In Java: 
abstract class Shape{ 
 int area; 
 public abstract int CalculateArea();  
 /* no implementation */ 
  
} 
 
 
Let’s go further and define two additional classes, circle and rectangle.  
As shapes, a circle and a rectangle share properties in common, as we 
can say a circle is a shape and a rectangle is a shape also.  We can 
rewrite this, using language from last class as follows: 
 

• A circle is-a shape 
• A rectangle is-a shape 

 
This use of is-a is a depiction of a particular type of relationship, 
Inheritance, which was discussed as part of Hierarchy (one of the main 
elements of the OO paradigm). 
As class designers, we want to exploit these classifications where 
beneficial.  So we want to exploit the similarities between circles and 
shapes, and between rectangles and shapes - definitely candidates for 
inheritance. 
 
Let’s define class circle as follows: 
 
In C#: 
 
class Circle : Shape30 
{ 
/* data 
 const double PI = 3.14159;  /* rounded */ 
 double radius;  
 
/* methods */ 
 double CalculateArea() 
 { 
 } 
} 
 
                                                 
30 In C#, the colon “:” in the class definition, as used here, indicates inheritance, with the immediate 
superclass appearing to the right of the colon, the subclass to the left. 
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class Rectangle : Shape 
{ 
/* data */ 
 
 double length; 
 double width; 
 
/* methods */ 
 double CalculateArea() 
 { 
 } 
 
} 
 
Since we’re using inheritance, we do not need to redefine area – we 
inherit it from our superclass Shape.  A superclass is a direct ancestor 
of a class.   So in this example, Shape is the superclass for both circle 
and rectangle.  We refer to circle and rectangle as subclasses.  This 
means that circle and rectangle are specializations of shape.  With 
circle and rectangle, we’re no longer referring to all generic shapes – 
we’re now referring only to shapes that conform to the definition of 
circle and rectangle. 
 
For class Circle, we’ve added a new field called radius.  The value of 
this field will be needed for us to calculate the area of a circle. 
 
For class Rectangle, we’ve added two new fields – length and width.  
These are necessary for the calculation of the area of a rectangle and 
are self-explanatory. 
 
Note – with these changes, even though circles and rectangles are 
both shapes, we can see that circles and rectangles are quite different. 
 
Let’s discuss what we need to do with the superclass method 
CalculateArea().  As you’ve seen from above, we have redefined 
CalculateArea() in both of our subclasses.    
 
The reason for this becomes clearer when we consider exactly how we 
calculate the area of circles and the area of rectangles.  They are not 
the same.   
 
For circles, area = PI * (radius)2 

 
For rectangles, area = (length * width) 
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Obviously, any implementation of CalculateArea() other than these 
for Circle and Rectangle would be incorrect. 
 
So, we need to implement the specific steps in CalculateArea() for 
Circle and Rectangle.   
 
Implementing specific functionality in a subclass method, where the 
method name is the same as in the superclass is known as method 
overriding.  This means we are able to implement, in each derived 
subclass, the appropriate steps for calculating the area of that specific 
shape. 
 
Here are important questions for us to answer:   

a) How would we implement CalculateArea() for the generic 
shape class?   

b) Why would we implement CalculateArea()  for class Shape?   
 
In the context of class Shape, i.e. what we understand via the generic 
description of the class, Shape represents generic shapes, no specific 
shapes.  In order to calculate the area of a particular shape (note the 
word particular), we need to know the specific shape for which we 
need to calculate the area.  This means an implementation of 
CalculateArea()in the superclass Shape has no meaning in this 
context.   So the answer to question b) is: we wouldn’t implement 
CalculateArea()in the superclass at all. 
 
So why include CalculateArea() in the superclass at all?  Well, all 
shapes have an area, with the way to calculate that area being specific 
to that particular shape.  So, as designers of the class, we wanted to 
make a provision in the superclass for the calculation of a shape’s 
area.  We want to make sure that all classes that inherit from shape 
implement a method that calculates that shape’s area with a method 
named CalculateArea(). 

Abstract Classes 
Let’s back up a moment.  We just said that there was no 
implementation of CalculateArea()in the superclass, because such 
an implementation, in this context, would make no sense.  However, 
we have declared the method CalculateArea()in the superclass.  As 
a result of this, class Shape is considered an abstract class.  An 
abstract class, such as class Shape, is one in which there is no 
implementation for at least one declared method.  Methods for which 
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there is no implementation are also considered abstract (pure virtual 
in C++; defined as abstract in Java and C#).  In Java and C#, the 
declaration of abstract methods requires adding the word “abstract” to 
the method declaration. 
 
Abstract classes are very interesting to work with.  Like all classes, 
they serve as a blueprint (from our earlier discussion).  However, 
unlike other classes, they cannot be instanced, i.e. objects of abstract 
classes cannot be instantiated.  So, in our example, we would not be 
able to create any generic shape objects.  In addition, any class that 
inherits from an abstract class has to provide an implementation for its 
abstract methods or it will also be considered abstract. 
 
So to recap, shape is our superclass or base-class.  It is the root of our 
class-hierarchy.  Class circle and class rectangle are subclasses of 
class shape.  The relationship is characterized by is-a: 
 

Circle is-a shape 
Rectange is-a shape. 

 
However, bear in mind that though circle and rectangle both inherit 
from shape, the following relationship is not valid, i.e.: 
 

Circle is-a rectangle  (wrong!) 
 

This is obviously incorrect. 
 
So each derived shape class knows how to calculate it’s own area.  
This ability is important to object oriented thinking. 
 
Let’s examine another subclass square.  Class square is a 
specialization of class rectangle.  A square is a rectangle with the 
length and width being equal.  This example is a bit simplistic, but it 
will serve to illustrate a point regarding overriding methods. 
 
Class Square (inherits rectangle) is described as follows: 
 
class Square : Rectangle 
{ 
/* data */ 
 
/* methods */ 
} 
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We have declared neither data nor methods.  This is because, in our 
simplistic example, the data and methods declared for rectangle are 
appropriate for square as well.  The idea here is this: though we are 
able to override the CalculateArea()method of class Rectangle and 
we are able to add new fields to class Square, we will do so when it’s 
appropriate.  In this example, the way we calculate the area of a 
rectangle is the same as the way we calculate the area of a square.   
In both cases we use (length * width).  So we can use the data and 
methods, as defined in the superclass (in this case class Rectangle) 
and they are still appropriate.  Compare this to the earlier situation 
regarding the implementation of CalculateArea()in class shape.  In 
this case, we do not need to override CalculateArea()for class 
Square. 

Class and Object Interactions 
As we discussed earlier, objects are instances of classes.  How do we 
represent objects in OO languages (or in our pseudo-code)?  In reality, 
objects in a programming language are declared in the same way as 
variables, with the difference being the type (in this case class is 
synonymous with type).   So let’s assume we have declared the 
following variables (objects): 
 
Shape objShape;             /* illegal!  Remember - cannot  
      create instance of  
      shape because Shape is  
      abstract */ 
 
Circle objCircle; 
 
Rectangle objRectangle; 
 
Square objSquare; 
 
We can draw parallels between classes and types and objects and 
variables as follows: 
 
Each new class we define introduces a new data type.  A class is an 
example of a user-defined type.  A class defines a kind or type of 
objects.  In fact, the values of a class are objects.  What does this 
mean?  Let’s review primitive types for a moment.  Let’s use a 
primitive type as an example.  Examples of primitive types are types 
such as integers and characters (int, char, etc. in C++/Java).  Let’s 
use the character type for our example.  The character type represents 
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all Unicode or ASCII characters (depending on language).  However, a 
particular character value represents one character. 
 
For example: 
  
 char c = ‘A’;  
 
In Java, C# or C++, this represents one member of the set of all 
characters, i.e. only the character ‘A’. 
 
Similarly, an object represents one example (or instance) of all objects 
represented by a particular class definition. 

How Classes Determine the Behavior of 
Objects 
As mentioned above, objects are instances of classes.  Another 
perspective is that a particular object (instance) is “one-of” the set of 
all objects defined by the class.  This is an important point.  The 
definition of a class provides the blueprint for an object.  An object 
cannot have data or methods not provided for (i.e. defined) in the 
class of which it is an instance.   
 
The behavior of an object is based on the functionality of its methods.  
Of course, the methods are defined in the class definition.  So, the 
class, which is the blueprint for the object, determines, based on this 
blueprint, what the behavior of the class will be. 

Introduction to Class Modeling using 
UML31 
Some important events occurred in the software industry in the mid 
1990’s.  One of the more important among them was the unification of 
the work by Booch, Rumbaugh and Jacobson, now known as the 
“Three Amigos”.  Booch, Rumbaugh and Jacobson are among the 
pioneers of object methodology.  Each was pursuing different areas 
separately.  Their “coming together” has yielded the modeling 
language now known as UML, the Unified Modeling Language.  In 
addition to UML, there is also a complete methodology that has been 
created for software developments, which uses UML to depict its 
artifacts. 
 

                                                 
31 Appendix 2 is a brief UML reference 
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UML is a general purpose modeling language designed to specify and 
document the products (i.e. artifacts) of software systems.  With UML, 
we are able to visually describe the structure and behavior of object-
oriented systems. 

History of UML 
As mentioned earlier, UML is a unification of previous modeling 
methods.  These earlier methods included Booch, OOSE (Object-
Oriented Software Engineering – Jacobsen) and OMT (Object Modeling 
Technique – Rumbaugh).  Development of UML began in 1994 when 
Grady Booch and Jim Rumbaugh of Rational Software began unifying 
the Booch and OMT methods.  In the fall of 1995, Ivar Jacobsen joined 
the unification efforts and merged in OOSE.  Further inputs from 
several other companies were accepted and UML 1.1 was submitted to 
the OMG (Object Management Group) for adoption in 1997. 

UML Notation 
Using UML, we can represent classes, objects and their respective 
relationships.  This list of icons is certainly not exhaustive, but it 
introduces us the icons used to represent classes and objects, such as 
those we’ve designed so far.  As we progress through the chapter, we 
will add more icons and model more complicated structures. 
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Class1

Object1

End1 End2

-End1

*

-End2

*

This icon represents a generalized class in UML.
The class name is first and is bold and is above
the first horizontal line.  Attributes and operations
may be added above each of the following
horizontal lines,respectively

This horizontal line represents a link (i.e. an
association) between two classes (note: in
practice, line not necessarily horizontal)

This icon represents an object, with the object's
name underlined and above the horizontal line

This line represents a link between objects (note:
line not necessarily only horizontal)

Classes and Objects in UML

 
 

Fig 3.1 UML Notation 
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*

*

1

*

*

*

Depicts binary association, i.e.
between two classes.

Depicts a composition
relationship (filled diamond)

Depicts an aggregation
relationship (clear diamond)

Depicts an inheritance
relationship.  The arrow points
from the subclass to the
superclass

* *

*

Depicts an N-ary association,
i.e. an associative relationship
between many classes.

 
 
Fig 3.2 UML Notation
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Let us revisit our shape example from before using UML Notation: 
 
 
 

+calculate_area()
-area

Shape

Square

+calculate_area()

-radius
-PI

Circle

+calculate_area()

-length
-width

Rectangle

Class Diagram in UML

 
Fig 3.3 UML Class Diagram 

In each case, the arrows indicate the direction of the inheritance 
relationship.  In addition, the diagram includes the character ‘A’ in the 
inverted triangle (in the Shape class icon) to communicate that Shape 
in an abstract class.  

Benefits of Class Modeling 
The fundamental reasons to use modeling notation is for analysis and 
communication.  Modeling is the act of creating a visual representation 
of the structure and behavior of a system.  It allows (at a certain level 
of abstraction) the communication of certain concepts more clearly 
(and easily) than the alternatives.  The spoken (natural) language, 
regardless of which one, is imprecise, and thus sometimes is not as 
useful when it comes to more complex concepts.  At the other end of 
the spectrum is code.  Code is very precise – it represents the very 
detailed instructions you’re giving the machine to execute, via 
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translation or directly.  While being very precise, it is also too detailed.  
So models are used when a certain level of precision is required, or 
needs to be conveyed, but when you also do not want to be lost in all 
of the details.   Another way of looking at it is that modeling allows 
someone to obtain an overall view of the system, one that may be 
comprehensive and detailed, but which is not bogged down by the 
specific implementation details particular to each language and 
environment. 

Modeling Activities 
As above, we will use modeling notation for communication.  We will 
need to communicate various aspects of our system, during each 
phase of development.  We will begin with class diagrams for 
communicating class structure.  As we progress, we will employ other 
UML diagrams to describe various perspectives of object behavior. 

Sample Project 

Analysis 
Identifying the abstractions (classes) is the key to solving this 
problem.  This activity will be iterative and we’ll make small steps of 
progress, as discussed earlier. 
 
Let’s start with the informal English method.  Let’s identify possible 
abstractions by underlining nouns, as follows: 
 

Design a program to manage student information based on 
the following criteria: 
 
There are three types of students: Typical, Faculty and 
Transfer.   
Typical students are regular college students, about which 
the following information is typically captured – Name, 
Address, ID and Major.   
Some students may also be faculty of the college.  In this 
case, what subject they teach is captured.  Members of 
faculty are also given a discount based on their years of 
service, 10% for up to 5 years, 20% for 6-10 years, 30% 
for more than 10 years.  Only faculty members of this 
college are eligible.   
In addition, some students may be temporary transfers 
from another college.  In this case, we need to know their 
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home college and its address to be able to return their 
grades at the end of the semester. 
 
All students over the age of 55 are eligible for a 15% 
discount (in addition to other discounts if possible). 
 
Students may be full-time or part-time.  Full-time students 
are those with 10 credits or more.  Part-time students are 
those with less than 10 credits. 
 
The current classes are as follows: 

• Abstract Algebra    4 Credits 
• Calculus     4 Credits 
• Intro to Computing    4 Credits 
• Advanced Computing    4 Credits 
• Object Oriented Programming Using C++ 4 Credits 
• English      3 Credits 
• Spanish     3 Credits 
• Chemistry     3 Credits 
• Physical Education    1 Credit 
• Art History     2 Credits 

 
The college charges $100 per credit per semester.  
 
The current majors are as follows: 

• Math 
• Computing 
• English 
• Chemistry 
• Undeclared 

 
Periodically, the college will add new classes and majors to 
these lists.  Students may have at most two majors. 

 
From this exercise, we have the following nouns: 
 
Program 
Student 
Information 
Typical 
Faculty 
Transfer 
College 
Name 
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Address 
Id 
Major 
Faculty 
Subject 
Discount 
Semester 
 
Obviously, there may be additional potential classes for us to use if we 
use other methods. 
 
How do we determine whether or not these potential or candidate 
classes make sense in the context of the problem to be solved? 
 
Let’s restate the problem.  What we are asked to do is design a system 
to “manage” a group of three types of students.   Let’s see what the 
requirements said: 

Your system must be capable of the following: 
• Adding a new student’s information 
• Searching and displaying a student’s information 
• Deleting a student 
• Changing/assigning classes and credits to students 
• Changing/assigning a student’s major 
• Changing/assigning a student’s type 
• Changing/assigning a student’s status, i.e. full-time or 

part-time according to the rules above 
• Producing reports as follows: 

Sorted list of full-time students (all information) 
Sorted list of part-time students (all information) 
Number of students of each type (typical, faculty and 
transfer) 
For each type of student, a sorted list of student names 
and addresses 
For each type of student, a reversed list of student 
names and addresses 
List of all students, their majors and number of credits 
A sorted list of all students based on their cost for the 
semester 

 
Notes: 

• The information in the system is for the current 
semester only – no history 

• The system should allow the entry of complete 
information at time of addition  
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So, by “managing” our group of three types of students, our system 
must be capable of providing the required functionality listed above. 
 
In reviewing our list of candidate classes (our nouns), we don’t have a 
candidate class “System”.  Let’s add one, giving us the following: 
 
Program 
Student 
Information 
Typical 
Faculty 
Transfer 
College 
Name 
Address 
Id 
Major 
Faculty 
Subject 
Discount 
Semester 
System 
 
Given our understanding of the problem, let’s investigate each 
abstraction’s semantics by employing CRC cards, or their equivalent.  
So, imagine you have 3x5 cards, on each of which you have written 
one of the nouns extracted earlier.  On one side we will put the class’ 
responsibility and on the other side, we will put the class’ 
collaborators. 
 
Let’s view each of these separately: 
 
Program 
Responsibilities 
Hmmm.  Something called “program” seems to refer to what we’re 
trying to design.   So the responsibilities of “program “ would be to 
provide the functionality per the requirements. 
Collaborators 
With the responsibilities of Program define as above, it would seem 
that it would interact with many or all of the classes included in the 
design.  But, as we have not investigated the other classes, let’s defer 
this until later on.  
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Student 
Responsibilities 
This class represents all students in our college.  This seems to be 
central to our design.  What are the responsibilities?  A student is 
responsible having zero, one or two majors, a selection of one or more 
classes, etc. 
Collaborators 
From the information we’ve gathered so far, the Program class, in 
addition to majors and classes would be collaborators. 
 
Information 
Responsibilities 
What would this class represent?  That is not clear.  In re-reading the 
requirements, it seems we should have put “information” with 
“student”. 
Collaborators 
None. 
 
Typical 
Responsibilities 
This class would represent one group of students.  Upon further 
review, it seems the responsibilities of this class are very similar to 
those of the student class outlined above. 
Collaborators 
Same as Student. 
 
Faculty 
Responsibilities 
This class also represents one group of students.  The responsibilities 
of this class are also very similar to those of the student class outlined 
above, with the exception of the following:  In representing students 
that are also faculty, this class must also keep track of what subjects 
are taught as well 
Collaborators 
Same as Student. 
 
Transfer 
Responsibilities 
This class also represents one group of students.  The responsibilities 
of this class are also very similar to those of the student class outlined 
above, with the exception of the following:  In representing students 
that are also transfers, this class must also keep track (via college 
name and address) of which college these students have come from. 
Collaborators 
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Same as Student. 
 
College 
Responsibilities 
In the context of the problem, this class would represent colleges.  
Thus, this class would be responsible for keeping names and address 
and any other information relevant to colleges, given in the problem. 
Collaborators 
Transfer students 
 
Name 
Responsibilities 
This would represent a student’s name.  Not enough information was 
given in the problem to determine how a name should be represented.  
We will have to make an assumption, as follows: first name, last 
name, middle initial and title (Mr., Mrs., etc.) 
Collaborators 
This class would collaborate with all classes that need names, such as 
the student, typical, transfer and faculty student classes. 
 
Address 
Responsibilities 
This would represent an address.  Enough information was not given in 
the problem to determine how an address should be represented.  We 
will have to make an assumption, as follows: street, city, state and 
zip.  
Collaborators 
All classes requiring an address, i.e. student, typical, transfer and 
faculty student classes, in addition to the college class. 
 
ID 
Responsibilities 
This class would represent a student’s ID. 
Collaborators 
Student, typical, transfer and faculty student classes. 
 
Major 
Responsibilities 
This would represent a student’s major.  Enough information was not 
given in the problem to determine how a major should be abstracted.  
So we may assume that a major would only have a name. 
Collaborators 
Student, typical, transfer and faculty student classes. 
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Faculty 
Responsibilities 
In the context of the problem, this class would represent all members 
of faculty of a college.  Not enough information is available. 
Collaborators 
The College class. 
 
Subject 
Responsibilities 
This class would represent all subjects available to students.  Based on 
the requirements, this class would contain the subject’s name and 
number of credits. 
Collaborators 
Collaborators could include Student, Typical, Transfer and Faculty 
“student” classes, in addition to the Program class. 
Discount 
Responsibilities 
This class would represent all discounts available to students. 
Collaborators 
Collaborators could include Student, Typical, Transfer and Faculty 
“student” classes. 
 
Semester 
Responsibilities 
This class would represent all semesters. 
Collaborators 
Collaborators could include Student, Typical, Transfer and Faculty 
“student” classes, the College class and the Program class. 
 
System 
Responsibilities 
This class would be responsible for providing the functionality outlined 
in the requirements.  In addition, something has to get the ball rolling.  
The system class would be responsible for this as well.   
Collaborators 
Collaborators could include Student, Typical, Transfer and Faculty 
“student” classes, etc. 
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Chapter Summary 
 

• A class provides the blueprint for an object, as an object is an 
instance of a class. 

 
• UML is a general purpose modeling language designed to specify 

and document the products of software systems. 
 

• Class modeling helps us in analysis and allows us to 
communicate better. 
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Exercises 
1. Create class diagrams for each of the examples of inheritance, 

composition, aggregation and association done for the previous 
sessions’ assignment. 
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Chapter 4 
 
Class Relationships and Interactions 

Class Hierarchies  
Last chapter, we discussed the structure of classes.  We added a new 
definition of a class as follows: 

 
A class is a structure that contains data and methods that 
manipulate that data. 

 
Based on this definition, we looked at how we would implement 
sample classes and extended our discussion to include inheritance.  To 
review, the inheritance relationship is based on similarities between 
supertypes (i.e. superclasses) and subtypes (i.e. subclasses).  These 
similarities are described by “is-a”.  
 
Examples (from last time): 
 
 A circle is-a shape 
 A rectangle is-a shape 
 
Subclasses inherit methods and data from superclasses (i.e. parent 
classes or base classes). 
 
Taken as a whole, this is an example of a class hierarchy.  A class 
hierarchy represents relationships between classes.  The hierarchy 
may be an inheritance hierarchy (as in our previous example), but 
there are other hierarchies as well, such as Composition, Aggregation 
and Association.  Each is discussed below. 
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Inheritance and Polymorphism 

Inheritance defined 
Inheritance is the relationship (as in our previous example) where one 
class is the superclass and the other(s) inherit from, or extend the 
functionality defined in that class.  Again, this relationship is 
characterized by “is-a”, also as above. 

Polymorphism defined 
Polymorphism literally means “many forms”.  The relevance of this 
becomes clearer below.  
 
In the last chapter, we discussed abstract classes.  A class is described 
as abstract if it contains at least one abstract method.  An abstract 
method does not have an implementation in the class in which it is 
declared.  A subclass that inherits from an abstract base class, but 
does not provide implementations for the abstract methods is itself an 
abstract class. 
 
In our example from last chapter, we had the following: 
 
abstract class Shape             
{ 
/* Data */ 
 
 double area; 
  
 
/* Methods */ 
 public abstract double CalculateArea(); 
 
} 
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class Circle : Shape 
{ 
/* data 
 const double PI = 3.14159;  /* rounded */ 
 double radius;  
 
/* methods */ 
 public double CalculateArea() 
 { 
  //implementation omitted 
 } 
} 
 
class Rectangle : Shape 
{ 
/* data */ 
 
 double length; 
 double width; 
 
/* methods */ 
 public double CalculateArea() 
 { 
  //implementation omitted 
 } 
} 
 
Class Square : Rectangle 
{ 
/* data */ 
 
/* methods */ 
} 
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Class Diagram in UML

 
Fig 4.1 UML Class Diagram 

 
In our discussion, we determined that we would not be able to provide 
a meaningful implementation for CalculateArea() in class Shape.  
This is because, in our example, the steps to calculate the area of a 
circle and of a rectangle are very different (in this example, Square is 
a subclass of Rectangle, but the methods of calculating the area is the 
same for both).  This can also be seen in the additional attributes that 
were introduced in class Circle and in class Rectangle.  So, because 
there is a declaration but no implementation for CalculateArea()in 
class Shape, the class is an abstract class. 
 
We said that inheritance was the “is-a” relationship.  As before, we can 
say, 
  

A circle is-a shape 
 A rectangle is-a shape 
 A circle is-a rectangle   // Incorrect! 
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We also discussed that classes and objects are related.  An object is an 
instance of a class.  In programming languages, a class corresponds to 
a type.  More specifically, a class corresponds to a user-defined type.  
Correspondingly, in programming languages, an object would be a 
variable declared of that type (in general). 
 
To illustrate our example, let us introduce the concepts of pointers 
and references (address-of). 
 
A pointer is a special variable that holds the memory address of a 
variable.  In C++, we are not allowed to create instances of abstract 
classes, but we are allowed to create pointers of that type.   This may 
sound contradictory, i.e. to what are we pointing if we can’t create 
instances?  The answer to this is forthcoming.  In our example, we will 
use the asterisk, placed before the variable name to signify a pointer 
(*), i.e., here is our base-class pointer32: 
 
 Shape *ptrShape; 
 
Variables are essentially areas in memory, set aside to hold particular 
values.  The size of the area is dependent upon the type of the value it 
is to hold.  This area in memory has an address.  In some 
programming languages, there are operators that allow us to obtain 
this address.  These are reference (or address-of) operators. 
 
So let’s also assume that we have created two objects, one of class 
Circle and one of class Rectangle, as below: 
 
C++: 

Circle  objCircle; 
 
Rectangle objRectangle; 

 
C#: 

Circle  objCircle = new Circle()33; 
 
Rectangle objRectangle = new Rectangle(); 

 

                                                 
32 Note: not all languages, object-oriented or otherwise provide support for pointers.  Java does not provide 
support for pointers.  In C#, when using pointers, your code is termed “unsafe”. 
33 In C# (as in Java), we must explicitly use the “new” keyword to indicate that we’re requesting memory 
for creation of our object.  This is not required in C++, as objects are implicitly created when declared. 
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So, given these declarations (and the inheritance relationship), we are 
allowed to use the pointer to Shape to “point” to either of the objects 
of Circle or Rectangle.   
 
In C++: 
 

ptrShape = &objCircle;     /* “&” is our address-of  
     operator */ 
 
ptrShape = &objRectangle; 

 
in C#: 

ptrShape = objCircle;     /* “&” is not used for  
     address-of in C# */ 
 
ptrShape = objRectangle; 

  
We are allowed to do this because of the “is-a relationship”, i.e.: 
  

A circle is-a shape 
 A rectangle is-a shape 
 
In programming language terms, Circle is of the same type as Shape 
and Rectangle is the same type as Shape.  As such, these assignments 
are legal.  
 
Let’s make this assignment: 
C++: 

ptrShape = &objCircle; 
 
C#: 
 ptrShape = objCircle; 
 
With this assignment, we will use this pointer, ptrShape, to 
manipulate the object to which it points.   All of our classes have the 
declaration of CalculateArea().  As before, it is not implemented in 
class Shape.  ptrShape is of class Shape.  It is reasonable to expect 
that we would be attempting to call the version of CalculateArea()in 
class Shape if we did the following: 
C++: 
 double thisarea = ptrShape-> CalculateArea(); 
 
C#: 
 double thisarea = ptrShape.CalculateArea(); 
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Remember, there is no implementation of CalculateArea() in class 
Shape.   
 
Now let’s repeat this for Rectangle, as follows: 
 
C++: 

ptrShape = &objRectangle; 
 
double thisarea = ptrShape->CalculateArea(); 

 
C#: 

ptrShape = objRectangle; 
 
double thisarea = ptrShape.CalculateArea(); 

 
 
We know that class Circle has an implementation of CalculateArea(), 
as does class Rectangle.  In actuality, ptrShape, after each 
assignment, “points” to an object of that type.  In fact, ptrShape 
“knows” that it is pointing to a different object in each case.  So when 
we invoke (i.e. call) the CalculateArea()method using the ptrShape 
pointer, we get the appropriate implementation of CalculateArea(), 
for each assignment and invocation made earlier.  This behavior is an 
example of Polymorphism.  Polymorphism describes multiple 
behaviors, i.e. the selection of the correct implementation of methods, 
from one source, i.e. our base class pointer. 
 
Here is another example of Polymorphism: 
 
Given the example above, suppose we have a method called 
GetTheArea() defined in some class (or globally), which takes one 
parameter,  a pointer (or a reference in C#) of type Shape.  The 
method would be defined as follows: 
 
C++: 
double GetTheArea (Shape *ptrShape) { 
 return ptrShape->calculate_area() 
} 
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C#: 
double GetTheArea (Shape ptrShape)  
{ 
 return ptrShape.CalculateArea() 
} 
 
Here, we see that this method could be called with a pointer actually 
pointing to any of our subclasses, as they all resolve down to type 
Shape.  In this way, we could have this one method able to handle any 
subclass of Shape.  As long as the method called inside, i.e. 
CalculateArea(), is defined in the superclass shape, we have no 
problems creating and executing a method such as GetTheArea(). 
 
Polymorphism is available due to late-binding and method overriding.  
In describing Inheritance and Polymorphism, we’ve used classes that 
have the same methods declared in each of them.  When base class 
methods are re-declared and re-implemented in subclasses, those 
methods are overridden.  We say the subclass overrides the 
superclass method.  So, in Circle and Rectangle, we see overridden 
examples of CalculateArea(), as it was first declared in the 
superclass Shape.  With late-binding, the object being referred to 
becomes the target of the execution – it is not based solely on the 
type of the reference or pointer (as in our example).  So, if we actually 
had a Circle object, we would want to execute CalculateArea()for 
our object of class Circle, not CalculateArea()for Shape, which we 
could not, anyway.  Late-binding allows this determination to happen 
at run-time, not at compile time, which is otherwise the norm. 

Benefits and Drawbacks of Inheritance 
Inheritance allows the leveraging of similarities between classes.  This 
could allow us to define functionality in one place, extending it as 
needed.  This in turn, reduces redundancy and can promote more 
efficient production of code.  Also, if the base functionality is 
“certified”, i.e., has been tested and works, extending it lessens the 
“risk” of the new code, as it were.  In addition, changes to 
superclasses are available to subclasses without necessarily changing 
the subclasses.  Inheritance can make the job of designing, coding and 
maintaining somewhat easier.  Also, the ability to exploit 
polymorphism is as a result of inheritance. 
 
Inheritance does come at a price, though, if done intelligently, the 
price may not be great relative to the code reuse and convenience 
aspects.  The run-time environment has to manage all of the facilities 
needed to provide inheritance and polymorphism.  In addition, 
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whereas changes to superclasses may benefit subclasses, disaster may 
strike if superclasses are changed in ways which significantly change 
the behavior of subclasses. 

Composition and Aggregation 
This relationship is characterized by “has-a” (as opposed to is-a).  With 
Composition and Aggregation relationships, we are describing 
“container” relationships, i.e. a class contains objects (variables) of 
other classes.   
 
Composition is another example of an Aggregation class relationship, 
though it is a much stronger form.   Composition implies that the 
component is an integral part of the whole aggregate.  Think of a 
square.  A square has four sides of equal length.  A square cannot 
exist without four sides of equal length.  Thus, there exists a strong 
ownership of the components, by the aggregate structure.  We may 
restate this by saying the following.  With Composition, there is a 
strong coupling between the aggregate class and the elements that 
are aggregated, whereas with Aggregation, the coupling is much 
looser. 
 
We can use an automobile as an example of Composition.  An 
automobile is made up (and is the sum) of many parts, such as an 
engine, seats, a steering wheel, wheels and tires, etc.  So if we 
designed a class Auto, Auto would have to contain these (and other) 
elements, to provide the expected behavior of a car.  Each of these 
elements are objects, with their own behaviors.  However, an auto is 
not “valid” if any of these parts are missing.  For example, imagine a 
car without an engine! 

Differences between Aggregation and Inheritance 
Inheritance relationships depict similarities between classes that fit the 
“is-a” form.  Composition/Aggregation relationships depict a 
relationship between classes of the “has-a” form.  The semantics are 
borne out by the examples above.  Either of these forms of hierarchy 
will support the design goals of code reuse, etc.  The decision of which 
to use must be made based on which relationship may be exploited to 
greatest value. 

Class Associations 
Associative Relationships Defined 
There is yet another class relationship, Association.  With Association, 
we are describing associative relationships between classes.  To 
demonstrate association, let us ponder a typical sale at a merchant.  A 
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sale is a type of transaction that involves one or more items that were 
for sale.  Let’s assume that each of these items, part of the overall 
inventory, is an individual object.  Let’s also assume that we have a 
class Sale, which represents this type of transaction.  Then we can see 
that this type of transaction, a Sale, is associated with the items 
purchased by the customer, each of which is represented by a 
particular class. 

Cardinality 
We can use cardinality to help describe associative relationships.  
Associative relationships may be 1-1, 1-many or many-many.  If we 
generalize the example above to be one between sales and items for 
sale, then we see this relationship is 1-many, as we can have more 
than one item for sale included in one sale transaction. 
 
Here is an example: 
 
class ItemForSale 
{ 
 double  price; 
 int  numberInStock; 
} 
 
class Sale 
{ 

ItemForSale  item; 
 Date   date; 
 int   quantity; 
 Person  salesperson;  
} 
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+price : long
+number_In_Stock : long

Item_For_Sale

+itemForSale : Item_For_Sale
-date : Date
-quantity : long
-salesPerson : Object

Sale

1
*

 
 

Fig 4.2 Associations 

Types of Associations between Classes 

Mandatory and Optional Associations 
Some associations depict mandatory relationships between classes, 
others optional.  Our example depicts a mandatory relationship 
between the Sale and ItemForSale classes.  Obviously, we cannot have 
a sale if we have not sold anything!  So, for each sale, there must be 
at least one item for sale that was included in the transaction. 

Which Relationship do we Choose, When? 
Each of the relationships above lend themselves to certain situations.  
Inheritance may be useful when that relationship makes sense, i.e. 
there is a “is-a” relationship between classes.  In addition, we could 
use inheritance when we seek to leverage the similarities between 
groups.  Inheritance also gives us the opportunity to leverage 
polymorphism.  Aggregation, and the stronger form, Composition, 
allows us to create classes comprised of objects of other classes.  
Association allows us to define associative relationships between 
classes.  Fundamentally, the type of relationship should depend on the 
behavior we are trying to implement. 

What are the Costs/Benefits of Each? 
Each relationship has a cost and a benefit.  Some costs are not as 
quickly noticed as others.  For example, in order for Inheritance (and 
Polymorphism) to work, the programming environment must support 
late-binding.  In late-binding, the resolution of objects is postponed 
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until run-time, as opposed to at compile-time as usual.  This requires 
additional structures such as vtables34, etc.  This adds overhead to the 
program’s execution, although these structures are highly optimized so 
as to not add to much.  Inheritance does allow code reuse, by allowing 
the inheritance of the functionality defined in superclasses.  In 
addition, Polymorphism, which is available due to Inheritance, could 
lead to simplification of the program’s code.   Inheritance is also an 
example of tight-coupling – explained later on.   
 
Aggregation and Composition affords us benefits as well.  Here, we are 
able to change the structure of the component parts without affecting 
the aggregate.  This could give us net rewards, as we may avoid 
wholescale changes to our system, due to a change to one component.   
 
As all of these are available to us, we can use any or all of these, with 
any combination in designing our object-oriented systems. 
 

Interfaces vs. Implementation 

What is the Interface of a Class? 
The interface of a class describes what is visible from “outside” that 
class.  The visible members are those that are accessible to other 
objects.  The interface does not refer to what is visible to methods 
declared inside a particular class. 
 
Another perspective is that the interface of a class specifies the 
operations of a class that are visible to the outside world, without 
allowing the outside world the ability to see how those operations are 
implemented.  The interface implies the class’ functionality, but has no 
details about implementation. 

Implementing a Class’ Functionality 
A class’ functionality is the based on the definitions of methods within 
the class.  The interface of the class is providing an interface to the 
functionality of the class, though not necessarily to all methods defined 
within the class. 

                                                 
34 In order to support polymorphism, object-oriented languages have the ability to do late-binding.  With 
late binding, certain specific types are not resolved until run-time.  Virtual tables (vtables) are used to 
resolve (bind) types at run-time.  This is how a pointer or reference to a subclass object is resolved, even 
though the pointer or reference may have been defined originally as a pointer or reference to a superclass. 
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Encapsulation and Information Hiding 
Our discussion of interfaces has to start with the discussion of access 
control.   
 
Earlier in Chapter #2, we stated: 
 

In the OO paradigm, classes consist of data and the means to 
manipulate that data.  The class owns both of these items.  The 
data owned by a class may be referred to as its properties or 
attributes.  The means to manipulate this data is via functions, 
collectively known as methods.  The functionality provided by 
these methods determines the behavior (as above). 
 
In addition, how these methods are implemented, is kept on the 
“inside” of the class, i.e. hidden from the outside.  In addition, 
the attributes of a class are not necessarily visible from the 
outside either, so it is more difficult for memory to be 
overwritten or values changed inadvertently. 

 

Access Level Controls 
Part of the overall view of encapsulation is obtained by using access 
controls.  Access controls restrict (or allow) access to the methods and 
data of a class.  In general, there are three access levels for methods 
and data: public, private and protected. 
 
With a public access level, class methods and data are accessible by 
other objects and variables.  An example follows. 
 
Let’s assume we have the following class: 
 
 class PublicExample 

{ 
  public int mydata; 
 } 
Let’s also assume we have the following declarations, outside of the 
class PublicExample: 
 
  int   thisnumber; 
  PublicExample objMyObject; 
 
With the public access level, this statement is legal, using our “dot” 
notation for member access: 
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 thisnumber = objMyObject.mydata; 
 
This is allowed because of the public access level.  The data contained 
in the object objMyObject, is accessible from “outside”, i.e. we are 
able to complete the assignment. 
 
With private access, methods and data so declared may only be 
accessed from methods declared inside the class.  The methods and 
data declared private are also not accessible by subclasses.  So, if we 
revisit our earlier example, we have the following: 
 
Let’s assume we have the following class: 
 
 class PrivateExample 

{ 
  private int mydata; 

}   
Let’s also assume we have the following declarations, outside of the 
class PrivateExample: 
 
  int  thisnumber; 
  PrivateExample objMyObject; 
 
With the private access level, this statement is not legal: 
 
 thisnumber = objMyObject.mydata;          // not legal! 
 
This is not allowed because of the private access level.  The data 
contained in the object objMyObject, is not accessible from “outside”, 
i.e. we are not able to complete the assignment.  However, if we 
declared methods inside class PrivateExample, we would be able to 
access mydata. 
 
With protected access, methods and data so declared may only be 
accessed by methods declared inside the class or inside subclasses.  
So, if we revisit our earlier example, we have the following: 
 
Let’s assume we have the following class: 
 
 class ProtectedExample 

{ 
  protected int mydata; 

} 
   

 class DerivedClass : ProtectedExample 



 95  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

{ 
  //method 
  public void PrintMyData() 

{/* does not return a  
value, only prints mydata */ 

}         
} 

 
Let’s also assume we have the following declarations, outside of the 
class ProtectedExample: 
  int   thisnumber; 
  DerivedClass objMyDerivedObject; 
 
We can invoke the method PrintMyData(), as follows: 
 
  ObjMyDerivedObject.PrintMyData();       // legal 
 
If we’ve implemented this function correctly it will print the value of 
mydata. This is allowed because of the protected access level.  The 
data contained in the object objMyObject, is not accessible from 
“outside”, i.e. we are not able to access mydata directly.   
 
  thisnumber = ObjMyDerivedObject.mydata // illegal! 
 
However, we are able to access mydata from inside the method 
declared in the derived class because it was declared protected in the 
base class. 
 
The interface of a class then, is the view from the outside. In general, 
the public and protected data and methods constitute the interface.  Of 
course, we’re only including the protected methods for those cases 
when we’re using inheritance and are accessing such methods and 
data from subclasses.  If we’re not using inheritance, protected and 
private are equivalent. 
 
These access levels, when used with methods allow us to restrict 
access to the methods themselves, in addition to hiding the 
implementation of the methods by placing them inside the class. 

Why Have Private Class Data? 
Here’s a quick scenario.  Suppose I have a class Person, with, among 
other data elements, an integer field age.  Let’s define field age to be 
public.  Now, based on the implied semantics of class Person, we 
would expect a person’s age to be a positive integer (since we’ve 
defined it as an integer).  Values such as -1, or any negative value 
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would be invalid.  We wouldn’t knowingly assign such a value to age, 
would we?  Indeed, we could, and nothing could stop us because the 
age field is public.  This is the sort of thing we’d want some validation 
to catch, before it ended up being assigned to a field.  But, again, 
since the field is public, the assignment will happen and be completed 
before any validation could occur.  Now, the fact that the age has a 
negative number could cause all sorts of problems for the program, 
because, the reasonable expectation of how objects of class Person 
would behave does not include representing folks with a negative age! 
 
This can be prevented by making the age field private and defining 
public Accessor35 methods to provide access to the data.  These 
Accessor methods (typically Get() and Set(), or properties in Microsoft 
languages) allow you to have the data come in via a method which 
performs validation before the assignment is complete.  If there is an 
error, it can be dealt with at the point of attempted assignment, not 
somewhere downstream.  
 

Sample Project 
From an analysis of each class’ responsibilities, we see that there’s a 
lot of similarity between all four classes.  This strong similarity is borne 
out by the language of the requirements, which refers to these as 
different “types” of students.  That would imply that each type of 
student is fundamentally a student, just with different attributes.  
Hmmm.  Sounds like we may be able to identify and use our 
inheritance relationship, i.e. is-a.  So, we have the following: 
 
A Typical Student is-a Student 
A Faculty Student is-a Student 
A Transfer Student is-a Student 

                                                 
35 So named because they provide “access” to private data 
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Student

Typical Student Faculty Student Transfer Student

 

Fig 4.2 Student Diagram 

 
As with everything else, we will have pros and cons to any decision we 
make.  If we use this hierarchy, it would appear that it allows us the 
flexibility of easily having other types of students in the future, if we 
need to.  Obviously, the need to do this is outside of the scope of the 
problem.  
 
If we look at the responsibilities of the Student and Typical Student 
classes, we notice that they are very similar.  In fact, based on the 
requirements, the attributes of the Student class are the same as the 
attributes of the Typical Student class.  This could make the Student 
and Typical Student classes redundant.  So, we could create the 
hierarchy above, which would give us future flexibility, or we could 
ignore (i.e. throw out) class Student and have our hierarchy begin with 
class Typical Student.  If we begin with Typical Student, we still have 
the ability to add new student types later on.  The only potential 
caveat would be that they would inherit the behavior of Typical 
Student.  This hierarchy is described below: 
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Typical Student

Faculty Student Transfer Student

 

Fig 4.3 Student Diagram 

 
What would happen if we ignored the potential inheritance relationship 
between the “student” classes?  That gives us two options.  We could 
have one class that represents all types of students, or we could have 
three separate classes, one for each type of student, as follows: 
 
Class EveryStudent: 
Name    // for all three types 
Address   // for all three types 
Major    // for all three types 
Subject taught  // for faculty 
Home college name  // for transfers 
Home college address // for transfers 
 
If we had one class for each student, we would have to put all of the 
attributes for all three types of students into one class.  While this is 
possible, it would mean that every time we had an instance of that 
class, all of these attributes would be available, whether or not they 
were necessary.  This means, faculty student objects would have the 
home college name and home college address attributes, even though 
they may never be used for those types of students.  In addition, 
typical student objects would have the two attributes of transfer 
students and the attribute of faculty students, i.e. subject taught as 
well, even though these may never be used either.  The counterpoint 
is that the system is supposed to allow changes in student types, so 
this could be one argument for having all attributes in one class.   
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Let’s also consider what would happen if we needed to introduce 
another type of student with different attributes?  This would force us 
to have to change our one large class and that may have 
consequences that may have far-reaching effects on all of the other 
areas of our system that interact with objects of that class.  In fact 
any change to our class may have far-reaching effects on other areas 
of our system.  So having one monolithic class may not be wise.   
 
Another alternative is to have each type of student be an unrelated 
class, i.e. not related by inheritance (or any other relationship).  This 
is also possible.   This means that while introducing a new student 
type would not have any effect on the other student classes, it would 
have far-reaching effects on the rest of the system, as all areas of the 
system that interact with students would how have to be modified to 
accept a new student type, in addition to the others.  Also, having 
separate classes could mean increasing the complexity of the system, 
as now the system has to manage 3 or 4 separate unrelated items, as 
opposed to 3 or 4 related items, allowing us to leverage inheritance 
and polymorphism, for example. 
 
We will revisit our decisions and the alternatives as we evaluate our 
design using the metrics (last chapter). 
 
If we look at the Program and System abstractions and their 
responsibilities, etc., we see some similarities here also.  It appears we 
have to do for these classes what we did before for the Student and 
Typical Student classes.  We may discard Program and keep System. 
 
If we look at the College abstraction, we see this abstraction 
represents the name and address of colleges, from which transfer 
students come.  We have a choice here.  We could just keep the 
college information as attributes directly in the Transfer Student class, 
or we can use this abstraction and use a composition relationship 
between the Transfer Student class and the College class.  What are 
the criteria for our decision?  If we place the information for colleges in 
the College class, we are acknowledging that we have more than one 
piece of information regarding colleges and we are allowing for 
changes to the information we keep on colleges to be made more 
easily.  We are also potentially introducing more complexity, as we will 
have another class in our system representing colleges.  However, as a 
rule, it is wiser to only include “atomic” values as attributes in a class.  
The information we need to keep for colleges is not “atomic” because 
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we need to keep two pieces of information on colleges, i.e. the name 
and address of the college.  So we keep the College class. 
 
We will also keep the Name and Address abstractions.  The reasons 
outlined above for the College class applies here as well.  The 
information we need to keep for names and addresses are not 
“atomic”, so we will use an abstraction for each of these. 
 
In contrast, the information needed for a student’s ID seems to be 
“atomic”.  We don’t have enough information in the requirements to 
determine that a single value (i.e. “atomic”) would not be sufficient.  
Possible ID’s could be a student’s social security number or a 
generated number that is guaranteed to be unique across all students.  
In either case, we are left with only one value.  So we do not need an 
abstraction for ID.  Instead, we will let ID be an attribute of a student. 
 
Let us examine the Major and Subject abstractions.  We do not have 
any information about Major to suggest that it will not be single-
valued, i.e. just the name of the major.  So we may or may not need 
an abstraction for Major.  For Subject, we know we have two pieces of 
information for each subject, the subject’s name and number of 
credits.  In addition, we also know that each student will be taking one 
or more subjects.  So that implies that we need to keep a list of 
subjects for each student.  Regardless, the same criteria we’ve used 
above is relevant here.  If we include the Subject information with the 
attributes of a student, then it causes us to have to manage changes 
to individual subjects.  So we don’t need the Major abstraction, but we 
will keep the Subject abstraction. 
 
The Faculty abstraction would represent all members of the faculty of 
a college (including those that were students).  We could leverage 
Multiple Inheritance.  We have a class representing Students and a 
class representing members of faculty.  Effectively, a class 
representing both gives the behavior of Faculty Students.  However, 
we do not have any information in the requirements to describe what 
behavior the Faculty abstraction would have.  As a result, we will not 
utilize this abstraction. 
 
We’re left with two abstractions to review, that of Discount and 
Semester.  Even though there may be more than one discount in 
effect for a student, i.e. a faculty member that is also a student over 
55 will get the benefit of both discounts.  However, that resulting 
discount will be single valued.  Regarding Semester, based on the 
requirements, we are only keeping information for one semester 
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anyway.  So that implies this is single-valued also.  From this, it seems 
we do not need either abstraction. 
 
So, of our initial list of abstractions (candidate classes), what are we 
left with? 
 
Typical Student 
Faculty Student 
Transfer Student  
Home College 
Name 
Address 
Major 
Subject 
System 
 
Are there any other abstractions that we need?  Definitely.  Some of 
these are as follows.  Each student may take one or more subjects.  
This implies we need to maintain a list of subjects for each student.  
Our choices are to manage this list in the Typical Student class or to 
create another class to do that for us.  For this example, for clarity and 
consistency, it would be better to have the list of subjects as an 
abstraction.  An object of this class would then be included as an 
attribute of the Typical Student class.   
 
Students may have up to two majors.  We could use the same 
guidelines we used above and develop an abstraction for a list of 
majors for each student also. 
 
Per the requirements, the school may add new classes and new majors 
periodically.  This implies that the school (system) needs to maintain a 
list of all available classes and a list of all available majors, from which 
students will choose.  This then implies two new abstractions, one for 
each of these lists. 
 
We also need to manage a list of all students.   Thus, we will create an 
abstraction to do this also. 
 
Our list of abstractions is now as follows: 
 
Typical Student 
Faculty Student 
Transfer Student 
Home College 
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Name 
Address 
Subject 
Major 
System 
Student Majors 
Student Subjects 
All Majors 
All Subjects 
All Students 
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Chapter Summary 
• Inheritance is the relationship where one class is the superclass 

and others inherit from or extend the functionality defined in 
that class. 

 
• Polymorphism (“having multiple forms” describes the ability to 

use superclass references (or pointers) to manipulate subclass 
references (or pointers) due to inheritance relationship. 

 
• Classes may also have optional or mandatory associative 

relationships. 
 

• The interface of a class (or object) describes what is visible from 
outside the class (or object). 
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Exercises 
1. Create an object-oriented model of a directory of files on a 

computer.  Create a class diagram to describe the model. 
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Chapter 5 
 
Object Structure and Relationships 
In the previous chapter, we continued our discussion of class 
relationships with the discussion of Polymorphism, Composition 
(Aggregation and Association) and Access Controls.  In this chapter, 
we will discuss the objects and their interactions. 

What is an Object? 
To recap, an object is a specific instance of a class.  As we stated 
earlier, an object is constructed based on a “blueprint” that is the class 
specification.   

Structure of an Object 
A class is a structure containing methods and data.  The construction 
of a class is a design-time activity, i.e. you decide what the elements 
of your class will be before run-time (execution).   
 
An object is an instance of a class.  You may also view an object as 
one of the members of a class.  These two terminologies mean the 
same thing – an object has to obey the rules set out by the class’ 
design.   
 
Objects are built or created based on a “blueprint”, i.e. the class 
structure.  This means at run-time, memory is allocated for each 
object to be created, based on the fields and methods in the class.   
 
For each object created, there is then, a block of memory to hold fields 
and methods.  While this statement is generally true, in fact, there are 
some twists we must be aware of. 
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Instance Fields 
As mentioned above, each object has memory allocated for fields.  In 
general, then, each object has its own copy of the fields defined in the 
class.  These fields, for which each object has it’s own copy, are called 
instance fields.  This also means each instance of the class (or object) 
has it’s own copy. 
 
Example: 
If we use the Circle class from before, then we have: 
 
class Circle : Shape 
{ 
/* data */ 
 public const double PI = 3.14159;          // rounded 
 double radius;  
 
/* methods */ 
 double CalculateArea() 
 {//implementation 
 } 
} 
 
An instance (object) of class Circle would be represented as follows: 
 

Circle objCircle = new Circle();          
 
We would then expect to be able to execute statements such as: 
 

double x,y, area; 
 
x = objCircle.PI; 
area = objCircle.CalculateArea(); 

 
We would be able to execute similar statements for every object of 
class Circle that we created. 

Class Fields 
We could argue that it is redundant for each object of class Circle to 
have its own copy of PI, as it doesn’t change.  So, ideally, we would 
like to have one copy of PI that could be shared by all objects, instead 
of one copy for each object, as implied above.  Fields for which there is 
one copy, shared between all instances of a class are called class 
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fields36.  There is one copy of a class field, in a special area of memory 
that is shared by all instances of the class.   
 
Here is another example of the need for class fields.  Let’s imagine a 
mechanism for counting the number of objects of a class created by a 
program.  We’ve said objects are unique, have a state, have their own 
copy of data, etc.  Nothing we’ve said thus far has implied that the 
number of these objects is available to us, for example.  One way to 
keep track of the number of individual objects of a particular class is to 
utilize a class field.  You would increment the class field every time an 
object was created, and decrement the class field when the object was 
destroyed. 
 
Class fields are also referred to as static fields, based on popular 
object-oriented languages such as C++ and Java.  In our pseudocode, 
we will also use the keyword static to describe class fields. 
 
We may then rewrite class Circle as follows: 
 
class Circle : Shape 
{ 
/* data */ 
 public static double PI = 3.14159;          // rounded 
 double radius;  
 
/* methods */ 
 public double CalculateArea() 
 { 
 } 
} 

Methods 
As discussed above, method definition is a design-time activity.  By 
the time you’ve written your program, you’ve also defined your class’ 
methods.  Unlike fields (instance or class), methods do not change 
during execution.  The statements in a method may be passed 
different parameters, but the statements themselves (and the 
methods) do not change.  As such, object-oriented languages as C++ 
and Java allow objects to share methods.  So each method accesses 
(and effectively gets a copy of) the methods (and their local variables) 
of a class at execution time. 

                                                 
36 Class fields are also termed static fields in languages such as C++ and Java.  
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Object Initialization 
We’ve stated that an object has state, identity and behavior.  This 
implies that each time we create an instance of a class, we expect that 
object to behave as certain way, based on the blueprint (class 
definition).  In fact, we expect an object to be ready for use.  This also 
implies that we expect any initializations to be done prior to use. 
 
A constructor is a special method that is used to initialize objects prior 
to their use.  
 
Let us revisit our earlier (non-static) example of the class Circle: 
 
class Circle : Shape 
{ 
/* data */ 
 public const double PI = 3.14159;          // rounded 
 double radius;  
 
/* methods */ 
 public double CalculateArea() 
 { 
 } 
} 
 
Let us create a particular circle, as follows: 
 
Circle  objCircle         // based on our pseudocode 
 
If we create an instance of this class, what value do we expect radius 
to have?  Depending on the environment used for implementation, 
radius may be initialized by default to be 0 or 0.0 (integer or real).  
Just as likely, radius may not be initialized at all.  Regardless, if we 
create a particular instance of Circle, we do not have control over what 
initial value the field radius has initially.  This is potentially dangerous 
and could lead to system errors.  For example, if the field radius is 
initialized with a negative value, say, what does that mean for the 
class Circle?  That may not be appropriate.  Instead, what we need to 
ensure is that each circle is created with an initial value that is 
appropriate.   We will need to explicitly create a constructor to 
accomplish this. 
 
Object-oriented environments typically provide a default constructor 
for cases where a constructor isn’t explicitly defined.  This may or may 
not address issues such as the initial value of a number, as outlined 
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above.  Default constructors have other limitations.  In cases where 
the design of a particular class includes dynamic memory allocation, 
default constructors would not be able to handle these scenarios, as 
the constructor would not be able to make appropriate decisions. 
 
Constructors are methods that are executed prior to the object being 
ready for use.  This is important.  It is important that the constructor 
complete its tasks prior to the object’s use, as this will properly 
initialize the object’s fields.  While it is possible to set initial values of 
the objects after creation, i.e. not using a constructor, there is no 
control over what values are used to initialize the object’s fields if 
initialization is done this way.  Neither is there any control over the 
completeness of the initialization.  Either or both of these potential 
issues can lead to hard-to-find problems later on. 

Constructor Usage 
One of the most important aspects of constructor usage is to 
remember why you’re creating the constructor in the first place.  
Earlier, we talked about classes having “semantics”, i.e. rules. A class 
is a programmatic representation of something concrete in the real 
world.  Whatever we’re representing will have a set of rules that we 
use to make sure it is valid.  Many of these rules may apply to what 
the real-world item is like when it is created or made available, i.e. 
initially.  In our programmatic world, these rules are enforced using 
constructors. Here is an example.  Let’s say we are creating a program 
that represents a group of students in a classroom, where each 
student is represented by an individual object.  Each student object 
would have a name, address, student ID, to name a few, as a real 
student (after which our object is modeled) would.  In the real world, 
would a student without a name be allowed in the class? How about 
without a student ID?  If the answer to any such question is “no”, then 
in our program, we cannot allow student objects to exist without 
having the required information within.  How do we enforce this? We 
create constructor(s) that require the necessary information to be 
passed as arguments.  In this example, it will never be ok to have a 
student object without this information.  So, in addition to creating 
constructors that require this information, we must not create a 
default constructor for this class.  Remember, the system only 
provides a default constructor when you do not explicitly define one.  
So in this case, having defined one or more constructors to enforce 
your class’ rules, the system would try to utilize those constructors 
only. 
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Suppose you have a class that you don’t want instantiated?  What can 
you do to enforce this?  This is just another “rule” that a constructor 
can enforce.  We mentioned above that constructors are public 
methods that are executed after the memory for an object is allocated, 
but before the object is ready for use.  We also said that if no 
constructors are defined, the system will provide one for you.  Now, 
what would happen if there was a constructor, but it was not 
accessible, i.e. not public.  Well, an object of that class would not be 
able to be instantiated, because a critical part of the instantiation 
process would be inaccessible.  Thus, when you define a private 
constructor in a class, you will not be able to instantiate that class.  
This has a very different meaning from defining abstract methods in a 
class.  In this case, your class definition is complete, i.e. your class’ 
methods are fully implemented – you just don’t want anyone 
instantiating your class.  In the case of abstract classes, the class 
definition is incomplete, as you do not have full implementation for all 
the methods of your class (which is why it is an abstract class). 

Object De-initialization 
An object has a finite lifetime.  This lifetime starts when it is create 
and ends when it is destroyed.  Different systems manage object 
destruction differently.  However, there are similarities.  Memory that 
was allocated for the object needs to be reclaimed.  In some cases, 
dynamic memory was allocated for a particular object, i.e. “inside” an 
object.  This dynamic memory has to be de-allocated. 
 
As with constructors, destructors are also provided by default, for 
cases where a destructor has not been explicitly defined.  As with 
default constructors, though, default destructors do not handle de-
allocating dynamically allocated object memory well.  In fact, using 
default destructors in these instances will typically leave this memory 
behind, thus causing a memory leak. 
 
More recent languages provide “garbage collection” to help with object 
destruction.  Languages such as Java and the Microsoft .Net family, 
have mechanisms in their platforms that keep track of objects using 
reference counting, i.e. the keep track of the number of references to 
an object.  Once the number of references to an object reaches zero, 
the next time the garbage collection process executes, this memory 
allocated for this object can be returned to the heap.  Languages such 
as these do not provide explicit destructors the same way as 
languages such as C++ do.  They provide a language and/or platform 
features that allow you to call or implement methods that help you 
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deallocate dynamic memory used by the object, but such methods do 
not deallocate the memory used by the object itself at that time.  Such 
mechanisms are quite helpful in preventing memory leaks.  However, 
they are not foolproof, so care must still be taken with dynamic 
memory allocation in objects. 

Objects and Access Levels 
As we’ve mentioned before, classes provide the blueprints for objects.  
Classes also define levels of access.  Objects, being instances of 
classes, are constructed based on these blueprints and also adhere to 
the access levels.  Thus, the examples outlined last chapter (for public, 
private and protected access), apply to the objects of those classes as 
well.  In fact, the access levels defined in the class, i.e. at design-time, 
are meant to control the interaction between the objects at run-time.  
Each of the diagrams presented above would also be able to reflect 
these constraints. 

Class-Object Relationships 
Earlier, we introduced class hierarchies, i.e. inheritance, aggregation, 
composition and association.  Let us revisit aggregation and 
composition.  Both aggregation and composition are examples of the 
“has-a” relationship.  In both cases, the class that is the aggregation 
or composition has objects of other classes as its member variables (in 
addition to other member variables as necessary).  This means, at 
design time, your class (i.e. the aggregate or composite) will already 
be demonstrating object interactions, even though we would expect 
object interactions to occur only at run-time.  As a result, classes that 
are aggregations and compositions exhibit class-object interactions, 
because the class (the aggregate or composite) is interacting with the 
objects it is an aggregate (or composite) of. 

Objects and Inheritance 
Last chapter, we discussed inheritance and polymorphism.  Let’s look 
at an object’s structure to determine how inheritance and 
polymorphism work. 
 
Earlier, we said a new class introduces a new data type to the 
compiler.  All objects are instances of a class.  This means, each object 
is of a specific type also.  The type of an object is the class of which it 
is an instance.  What about objects of a subclass?  What type are 
they? 
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In inheritance hierarchies, subclasses are related to superclasses by 
the “is-a” relationship.  If we take “is-a” a step further, we see that 
this will have an impact on what the type of a subclass’ objects are.  
Each object of a subclass will have that subclass as its type (as 
above), but, in addition, will also have that subclass’ superclass as its 
type also.  In general, the object of a superclass will also have that 
subclass’ superclassses as types, as many as there are. 
 
The structure of the object of a subclass will then also include all of the 
elements of that subclass’ superclass, even those that are not public.  
This is true, because, the “is-a” statement would not be true if we left 
some parts (that were defined in the superclass(es)) out of the object.  
Everything is included, because that is the definition as described by 
those superclasses.  Let’s say the diagram below represents an object 
of the superclass in this example: 
 

 
 

Fig 5.1: Superclass object representation 
 
Then, an object of the subclass could be represented by this diagram: 
 

 
 
Fig 5.2: Subclass object representation 
 
As the diagram indicates, the definition of the superclass is “included” 
in the definition of the subclass (via inheritance).  As such (also 
indicated by the second diagram), the object of the subclass is actually 
of two types, as outlined earlier – the subclass itself, and the type of 
its superclass. 
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In the previous chapter, we looked at polymorphism.  The mechanism 
we’ve outlined above is actually what allows us to utilize polymorphism 
to our advantage in our programs.  It is the fact that each subclass 
object is its own type, as well as the type(s) of its superclass(es) that 
allow us to use references and/or pointers of a superclass (base class) 
type to manipulate objects of a subclass type.  This is possible because 
each subclass object “is-a” superclass object as well – so there is a 
“type equivalency” between the superclass and subclass types.  As we 
mentioned earlier, if any part of the superclass’ definition was omitted 
in the construction of the subclass object, the “type equivalency” 
between superclass and subclass types would not be correct. 

Subclass Initialization 
From the diagrams and discussion, we know we need to have a 
“complete” superclass object in order to have a valid subclass object.  
Earlier in this chapter, we saw how we can use constructors to enforce 
a class’ semantics.  Might these superclass constructors affect the 
creating of subclass objects?  Absolutely!  We need to adhere to these 
rules to create superclass objects, and without valid superclass 
objects, we will not have valid subclass objects.   
 
Many languages provide elements that allow us to call an immediate 
superclass’ constructor from inside a subclass’ constructor.  In many 
cases, such a call must be the first executable line in the subclass 
constructor.  This allows the superclass “part” of the subclass object to 
be created properly, i.e. adhere to the rules, during the subclass 
object’s construction process.  Here is an example: 
//C# syntax 
// Superclass 2DPoint 
public class 2DPoint{ 
 int x,y; //represents 2-dimensional point in space 
 
 public 2DPoint(int x, int y){ 
  this.x = x; 
  this.y = y; 

} 
} 
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//Subclass 3DPoint  
public class 3DPoint : 2DPoint{ 
 int z;  //represents 3rd dimension in space 
 
 public 3DPoint(int x, int y, int z){ 

base (x,y); //in Java, this would be: 
//super(x,y); 

  this.z = z; 
   

} 
} 
 
 
In this example, 2DPoint objects must have x- and y-coordinates at 
time of instantiation.  Since the 3DPoint class inherits from the 
2DPoint class, in order to have a 3DPoint object, we must have 
created a valid 2DPoint object.  So, the call to base(x,y) in this 
example, ensures that we have a properly constructed superclass 
object (2DPoint) before we continue initializing the 3DPoint object. 

Object Interactions and Relationships 
At run-time, a system’s functionality is provided by all of the objects 
and their associated interactions.  It is important to be able to 
represent this aspect of the system.  The diagrams we have reviewed 
thus far are not capable of capturing a system’s run-time behavior.  
The diagrams we have reviewed thus far capture static views of the 
system.  In fact, we need entirely new diagrams to model this 
behavior. 

Modeling Object Behavior at Run-Time 
What behavior are we trying to model?  From the discussions earlier in 
this section, we saw that objects have distinct lifetimes, i.e. they are 
created (instantiated), provide some functionality while they exist and 
are then terminated.  During their lifetimes, objects communicate with 
each other.  As before, in an object-oriented system, the operation of 
the system is based on the cooperative interaction of objects. Objects 
communicate via messages.  A message is a method invocation.  So, if 
I have two objects, A and B, then A passes a message to B if A 
invokes a method of B.  Likewise, B passes a message to A if B 
invokes a method of A.  This demonstrates possible links between 
objects A and B.  In addition, at any given point in time, objects have 
states, i.e. the value of the object’s attributes. 
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We use class diagrams to represent the static elements of a system.  
These static elements are the classes that form the blueprints of all of 
the objects in the system.  We need to model the dynamic elements of 
the system.  This will be from a more “real” perspective. 
 
The dynamic elements of the system include the following scenarios: 
We need to model the objects of the system at a particular point in 
time (instances in time). 
 
We need to model how groups of objects collaborate in some behavior, 
i.e. the behavior of a single use-case.  We need to model the objects 
and the messages that are passed between these objects within the 
use-case (interactions). 
 
To model the objects of the system at a particular point in time, we 
use object diagrams (also called instance diagrams).  These diagrams 
represent each object and the messages that are passed between 
them at some discrete point in time.   
 
To model how groups of objects collaborate, we use interaction 
diagrams.  In UML, there are two types of interaction diagrams – 
Sequence and Collaboration.   

Sequence Diagrams 
Sequence diagrams are useful for modeling how groups of objects 
proceed, over time, to provide the functionality required by (or to 
satisfy) a particular use case.  As mentioned earlier, a use case is a 
description of a particular usage scenario.  Sequence diagrams focus 
on the sequence of method calls, rather than the relationship(s) 
between the objects involved (see Collaboration Diagrams below).  
The Sequence diagram allows you to see the functionality provided by 
methods in each object participating in the use case.   
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Object1 Object2 Object3 Object4

Message1()

Message2()

Message3()

Message4()

Message4()

Message2()

Message3()

Message1()

Object5Message4()

Object lifeline

Method call

Method return

 
Fig 5.1 UML Sequence Diagram 

Let us review the elements of the diagram above.  The boxes at the 
top of the diagram represent objects.  We use this diagram to 
understand sequence in which methods of these objects are called as 
they collaborate in order to satisfy some functionality (described by a 
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use case, for example).  From each object downward is a dashed line.  
This line represents the “lifeline” of the object, i.e. the time during 
which the objects exist (lifetime), in the context of the functionality 
we’re reviewing.  Between lifelines, we see arrows.  Each arrow 
represents a message sent between objects (method call).  On each 
lifeline, there are narrow rectangles that.  Each arrow (message) 
extends between two narrow rectangles.  Each rectangle shows the 
“activation time” of an object.  They show the time it takes for each 
method to complete.   
 
Implicitly, at the end of the method, there is a return to the calling 
object.  However, the sequence diagram can be drawn to include 
explicit return calls to the calling object.  These explicit returns are 
depicted by dashed lines, in the opposite direction to the method call. 
 
Sequence diagrams can also depict asynchronous method calls 
(synchronous by default).  In the case of asynchronous calls, instead 
of a “full” arrowhead, a “half” arrowhead is used for each “half” of an 
asynchronous message. 

 



Object-Oriented Analysis and Design  118 

X52.9267-001  Not for Commercial Use   

Collaboration Diagrams 
In addition to Sequence diagrams, we may also use Collaboration 
diagrams to describe how a use case is satisfied.  Collaboration 
diagrams focus on the way several objects collaborate (i.e. work 
together) to accomplish some unit of work.  They focus on the 
relationships between objects to a greater degree than the sequence in 
which the methods on those objects are called.  These diagrams also 
make it easier to reconcile the activity depicted with the class 
diagrams (static model) representing the system. 
 
A Collaboration diagram shows the interaction between object via 
numbered messages.  With this diagram, the sequence of interactions 
is not as easily evident as in the Sequence diagram, but we are able to 
see, via the spatial layout, how the objects are linked together.  UML 
uses a decimal numbering scheme to make it clear which operation is 
calling which other operation, though it makes it harder to absorb the 
overall sequence. 
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Fig 5.2 Annotated UML Collaboration Diagram 

Let us decipher what the diagram above depicts.  Each rectangle is an 
object.  The lines between the objects in the diagram are links that 
represent relationships (association, aggregation or composition) 
between objects.  The arrows indicate method calls and their 
respective directions.  The numbers associated with each arrow 
indicates the sequence in which the methods are called.  They can be 
grouped, using the “.” (dot) notation to show which methods are called 
from within method calls. 
 

Object Diagrams 
In general, to view the objects of our system at a particular point in 
time, we can use generic “object” diagrams, also referred to as 
instance diagrams.  Object diagrams show the interactions between 
objects, without describing the sequence in which the messages occur 
or describing the messages.  So, an object diagram describes an 
example configuration of objects.  An example of an object diagram 
follows. 
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Given this class diagram:

An example object
diagram is as follows:

 
 
Fig 5.3 UML Diagrams 
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State Diagrams 
The state of an object is the value of its data attributes (fields, etc.) at 
a given point in time.  To capture the objects’ states visually, we use 
state diagrams.  State diagrams allow us to see how the object reacts 
to various messages over time.   
 
Unlike the previous diagrams, we use state diagrams to really put the 
focus on how one object’s data values change over time.  If the data in 
an object is private, the object’s data will only change in response to 
its public methods being called.  Thus, each individual state of the 
object would be caused by one or more method calls. 
 
Each state of the object is something that is determined by you, the 
designer.  Each state (i.e. value of the data in the object), may be 
given a name to be easily identified.  A simple example of a state 
diagram follows.   
 
Each state (represented by the oval) is a particular state of an object 
as a particular point in time.  As a result, a state diagram is used to 
depict various states of an object (one per diagram) and the 
messages, conditions, etc. that cause states to change (transitions), 
as the object moves from the initial state to the final state.   
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State1 State2 State3

Simple state diagram

Initial state

State Transition

Final state

 
 
Fig 5.4 UML State Diagram 
 

Static vs. Dynamic Modeling 
Static models, i.e. class diagrams, do a great job of describing the 
overall structure of a system’s classes.  They are termed “static” 
because this structure cannot be changed during execution.  It is fixed 
during the analysis and design phases of development.  So, while the 
number of objects in existence may vary over time, the structure of 
each object, regardless of how many there are, will not change while 
the program is running.   
 
It is clear, that static models do not provide a clear understanding of 
how a system will behave, while it is running.  We have to find another 
perspective for views of the system while it is running.  This is what 
dynamic modeling allows us to do. 
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Sample Project 
Our list of abstractions is now as follows: 
 
Typical Student 
Faculty Student 
Transfer Student 
Home College 
Name 
Address 
Subject 
Major 
System 
Student Majors 
Student Subjects 
All Majors 
All Subjects 
All Students 
 
We know have to describe all of the attributes (and methods) for each 
of our abstractions.  In doing this, we may realize that we have to 
make changes to our list of abstractions.  Let’s also begin by making 
all classes’ attributes private.  This implies that we have to define 
public accessor methods for each class.  I will include these accessor 
methods below as well. 
 
Class Typical Student 
 
Attributes: 
Student Name (Object of class Name) 
Student Address (Object of class Address) 
ID 
Majors (Object of class Student Majors)  
Subjects (Object of class Student Subjects) 
Grade 
Discount 
 
Methods:  
GetStudentName() 
SetStudentName() 
GetStudentAddress() 
SetStudentAddress() 
GetStudentID() 
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SetStudentID() 
GetStudentMajors() 
SetStudentMajors() 
GetStudentSubjects() 
SetStudentSubjects() 
GetStudentGrade() 
SetStudentGrade() 
GetStudentDiscount() 
SetStudentDiscount() 
 
Class Faculty Student 
 
Attributes: 
All attributes of Typical Student 
Subject Taught 
Date Employed (Start of employment - used to calculate length of 
service) 
 
Methods: 
All methods of Typical Student 
GetSubjectTaught() 
SetSubjectTaught() 
GetDateEmployed() 
SetDateEmployed() 
 
 
 
Class Transfer Student 
 
Attributes: 
All attributes of Typical Student 
Home college (Object of class College) 
 
Methods 
All methods of Typical Student 
GetHomeCollege() 
SetHomeCollege() 
 
Class Home College 
 
Attributes: 
College Name 
College Address (Object of class Address) 
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Methods: 
GetCollegeName() 
SetCollegeName() 
 
Class Name 
 
Attributes: 
First Name 
Middle Initial 
Last Name 
 
Methods: 
GetFirstName() 
SetFirstName() 
GetMiddleInitial() 
SetMiddleInitial() 
GetLastName() 
SetLastName() 
 
 
Class Address 
 
Attributes: 
Street Address 
City 
State 
Zip 
 
 
Methods: 
GetStreetAddress() 
Set StreetAddress() 
GetCity() 
SetCity() 
GetState() 
SetState() 
GetZip() 
SetZip() 
 
Class Major 
 
Attributes: 
Name_of_Major 
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Methods: 
GetMajor() 
SetMajor() 
 
 
Class Subject 
 
Attributes: 
Subject Name  
Credits 
 
Methods: 
GetSubjectName() 
SetSubjectName() 
GetCredits() 
SetCredits() 
 
Class System 
 
Attributes: 
Majors (Object of class All Majors) 
Subjects (Object of class All Subjects) 
All Students (List of objects representing all types of students) 
 
Methods: 
GetMajors() 
SetMajors() 
GetSubjects() 
SetSubjects() 
GetStudents() 
SetStudents() 
 
Class Student Majors 
 
Attributes: 
Majors 
 
Methods: 
GetMajors() 
SetMajors() 
 
Class Student Subjects 
 
Attributes: 
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Subjects 
 
Methods; 
GetSubjects() 
SetSubjects() 
 
Class All Majors 
 
Attributes: 
Majors 
 
Methods: 
GetMajors() 
SetMajors() 
 
Class All Subjects 
 
Attributes: 
Subjects 
 
Methods: 
GetSubjects() 
SetSubjects() 
 
Class All Students 
 
Attributes: 
Students 
 
Methods: 
GetStudent() 
SetStudent() 
 
Let’s assess where we are so far.  We’ve discussed attributes and 
accessor methods.  Let’s discuss the other methods we need, per the 
requirements. 
 
From the requirements, we see that we have to provide the following 
functionality: 
1. Adding a new student’s information 
2. Searching and displaying a student’s information 
3. Deleting a student 
4. Changing/assigning classes and credits to students 
5. Changing/assigning a student’s major 
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6. Changing/assigning a student’s type 
7. Changing/assigning a student’s status, i.e. full-time or part-time 

according to the rules above 
8. Producing reports as follows: 

Sorted list of full-time students (all information) 
Sorted list of part-time students (all information) 
Number of students of each type (typical, faculty and transfer) 
For each type of student, a sorted list of student names and 
addresses 
For each type of student, a reversed list of student names and 
addresses 
List of all students, their majors and number of credits 
A sorted list of all students based on their cost for the semester 

 
We will refine our design in the next chapter. 
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Chapter Summary 
• An object is a structure containing methods and data. 

 
• Each object gets its own copy of an instance field. 

 
• All objects in a class share one copy of a class field. 

 
• Objects are initialized using a specialized method called a 

Constructor. 
 

• Objects are destroyed using a specialized method called a 
Destructor (depending on language - not always available). 

 
• Object behavior may be captured at runtime using UML 

Sequence diagrams, Collaboration diagrams and State diagrams. 
 
 



Object-Oriented Analysis and Design  130 

X52.9267-001  Not for Commercial Use   

Exercises 

1. Give an example of situation where class fields (as opposed to 
instance fields) would be required. 

 
2. What changes the state of an object? 

 
3. How do objects collaborate at run-time? 

 
4. What aspects of a system do class diagrams capture? 

 
5. What aspects of a system do object diagrams capture? 
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Chapter 6 
 
Designing with Classes and Objects 
Design is primarily a refinement of the analysis model.  It incorporates 
non-functional requirements of the system and the constraints of the 
environment to transform the analysis model into something that can 
be coded.  Design must anticipate and factor in issues such as memory 
constraints, exception handling consistency, scalability, etc. 
 
Design is where the requirements, as abstracted by the activities in 
Analysis, head toward being made real and concrete (i.e. 
implemented).  We refine the models from Analysis, as required.  In 
Design, models are produced as well to augment those produced in 
Analysis.  The models depict aspects of the system that are real, not 
abstract.  In addition, these models can be directly implemented in 
code. 
 
In this chapter, we will continue exploring the object oriented design 
process using the tools and concepts we’ve discussed in the previous 
five sessions.  In addition, we will look at popular abstractions that we 
can use in developing our design.  
 
We will also discuss the elements of good system design.  We will 
concentrate on the elements of good class design, as this activity is 
the cornerstone of good object-oriented system design.  This will also 
allow us to benchmark where we are in our course example, to make 
sure we’re on the right track.  We will look at various aspects of 
design, patterns, elements, guidelines and metrics. 

Overview 
To effectively design object-oriented systems, we must grasp the 
relationships between our design strategies, language constructs and 
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the software engineering goals the combination of these is meant to 
achieve.  After all, there is a reason why we choose to do object-
oriented development in the first place. 
 
In order to design anything, we must first have a solid understanding 
of what problem we are trying to solve (what) and the methodology 
we will use to solve it (how).  These sound almost trivial, but they bear 
repeating as a solid understanding of these two elements early will 
allow you to avoid costly pitfalls later. 

Design Guidelines 
In object-oriented design, our fundamental building blocks are classes 
and objects.  Classes are the static structures created at “design-
time”.  At run-time, its the objects that are collaborating to provide the 
functionality of the system.  Objects are dynamic. They exist at 
runtime and are created dynamically. 
 
In order to have a good object-oriented design, we must: 
 

• Determine what the classes and objects will be. This is 
accomplished by performing the two steps below:  

o Identify the data to be contained in each class.  This may 
be accomplished using the techniques outlined in Chapter 
two.   

o Determine the operations to be defined on each class.  As 
before, it is an iterative process.   

• Identify any hierarchical relationships between the classes and 
objects. 

• Define which operations will comprise the class’ interface, i.e. 
public methods. 

 
These steps are part of an iterative process.  How do you know you’re 
done?  You’re done when you cannot make any more meaningful 
refinements to your list of classes.  You will find that they will need to 
be repeated as necessary.  It is unreasonable to expect perfection the 
first time through.  In addition, there may be additional classes that 
are not immediately evident from the requirements but which are 
discovered as a result of the analysis and design.   
 
Some of the changes that may arise as part of these iterations may 
have greater effects than others depending on whether the action is a 
change to a public area of the object or to a private area of the object. 
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The architecture of an object-oriented system encompasses its class 
and object structure.  This structure is essential to constructing a 
system that is understandable, extensible, maintainable and testable.   
According to Grady Booch37, good software architectures tend to have 
several attributes in common: 

• They are constructed in well defined layers of abstraction, each 
layer representing a coherent abstraction, provided through a 
well-defined and controlled interface and built upon equally well-
defined and controlled facilities at lower levels of abstractions. 

 
• There is a clear separation of concerns between the interface 

and implementation of each layer, making it possible to change 
the implementation of a layer without violating the assumptions 
made by its clients. 

 
• The architecture is simple: a common behavior is achieved 

through common abstractions and common mechanisms. 
 
The idea behind object-oriented design is to create a set of models 
that identify and use real-world elements and represent them by 
programming language elements.  This is made possible by the 
programming language’s ability to support the fundamental elements 
of object-oriented development 
.   
From what we’ve seen, the process involves identifying these classes 
and objects and then building the system based on the collaboration of 
these elements.  Thus, object-oriented design is a way of designing a 
system based on classes and objects. 
 
Object oriented design is based on the notion that a program is better 
if it more closely “resembles” the elements in the problem domain.  By 
“resembles” we mean uses language from the problem domain and 
uses abstractions based on (i.e. representing) elements in the problem 
domain (real world). 
 
Let’s restate what we’ve seen so far: In object-oriented design, we 
have various tools and methods at our disposal that were not available 
to us (at least not in the same way) with structured programming.  We 
have object-oriented elements (abstraction, encapsulation, hierarchical 
relationships, modularity and persistence) that we can identify and 

                                                 
37 Object Oriented Analysis and Design with Applications, 2nd Edition, Benjamin/Cummings Publishing 
Company, 1994 
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leverage.  Let us look at how leveraging these elements will help us 
create better programs. 

Abstraction 
Abstractions (via abstract data types, classes, etc.) are valuable tools 
for reducing the overall complexity of a problem.  They allow you to 
write your program in layers and to write the program in terms of the 
problem domain, rather than in computer science terms.  We can use 
abstraction to create programmatic elements that represent real-world 
elements.   
 
With abstraction, we can focus on the important details and ignore 
information that is not relevant to our solution.  If you had to focus on 
every last detail of information all the time, you would accomplish 
nothing. Abstractions are used as representations of real-world 
objects, as discussed in Chapter 2. 
 
The objects that you will identify and design will typically fall into a few 
categories.  You may design objects that represent the elements of the 
problem domain that directly represent some aspect of the problem 
and are most likely to be named after the element in the problem 
domain. 
 
Other objects will represent user-interface elements.  This includes 
windows, dialog boxes, buttons, scroll bars, etc.  Nowadays, most GUI 
(Graphical User Interface) elements are presented as objects, part of 
an object-oriented framework.  Microsoft Foundation Classes (MFC) 
and AWT/Swing are examples of GUI frameworks that present GUI 
elements in this way. 
 
Some objects will possibly be dedicated to management of specific 
tasks.  This may include objects representing lower-level system 
elements, possibly hardware interfaces, etc.  However, these may also 
include objects that provide other relatively low-level services. 
 
Some objects may be dedicated to data management.  These objects 
would include abstractions used to represent legacy data of whatever 
format.  This group would include the objects that user to integrate 
these data sources into our object-oriented system. 

Refining Class Selections 
In designing a system, the correct abstractions must be selected.  This 
is obvious.  But, how do we know we have selected the correct 
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abstractions?  Once we have candidate abstractions selected (before 
they become key abstractions), we should focus on the following 
questions, for each abstraction: 
 

• Will objects of this class be created? 
• How are objects of such a class created? 
• What are the semantics of the class? 
• Can objects of such a class be copied and/or destroyed? 
• What is the behavior of objects of such a class? 
• How will objects of the class be persisted? 

 
The review of answers to questions such as these will sometimes 
instantly disqualify candidate classes from consideration.  Indeed, if 
these questions cannot be answered satisfactorily, then the selection 
needs to be revised38. 
 
In answering these questions we also have to consider the following: 
 

• Decide the “level of abstraction” 
o Have objects interact at the same or similar levels of 

abstraction 
o Try to be uniform 
o Employ abstraction to present a consistent object interface 

 
• Static methods 

o Decide what should be static, what shouldn’t 
 
 

Viewing Your Classes from Another Perspective 
Once we think we have a good set of candidate classes that exist after 
we’ve weeded out the rest, we need to evaluate our abstractions from 
another perspective.  In performing the iterations outlined above, 
we’re primarily looking at classes from the standpoint of the way 
objects of one class will interact with objects of other classes.  This 
perspective gives us an understanding of how each class’ objects will 
“fit” into delivering the functionality of our system.   
 
There are however, other perspectives that we can take at this point in 
our design, to look at the quality of the structure of our classes and 
also how their objects will interact.  Of necessity, this step must occur 
after you’ve gone through enough loops to make you feel somewhat 
comfortable with the classes in your design.  If done too soon, you risk 

                                                 
38 Remember, the process is iterative, so all of these questions do not have to be answered immediately. 
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throwing away the effort if you decide to exclude a class from your 
system. 
 
This perspective will give us valuable information regarding the 
“quality” of our abstractions.  There are things we can look for that are 
related to the structure and content of our classes, in addition to the 
interaction between objects of the classes.  Lets start with structure 
and content. 

Structure and Content Quality 
In looking at the structure and content of our classes, there are a few 
questions we want to ask, as follows: 

1. How strong is any connection from one class or object to 
another? 

2. Are the methods defined in each class relevant to the stated 
behavior and semantics of the class? 

3. Given the expected behavior and the semantics of the class, are 
there enough methods to allow this behavior to be realized? 

4. Given the expected behavior and the semantics of the class, are 
there enough methods to give appropriate access to the data in 
the class and/or to make the class “complete”? 

5. Are the methods named appropriately, according to some 
convention and/or indicative of their purpose? 

6. Are the methods and data defined with the appropriate access 
levels given the semantics of the class? 

 
1. How Strong is any Connection From one Class or Object to 
Another? 
In answering this question, we’re trying to identify the degree to which 
a class is coupled to another class.  We’re trying to measure the 
strength of association established by a connection from one class or 
object to another.  Classes may be exhibit strong or weak coupling. 
 
Strong Coupling 
Strong coupling complicates a system, since a module will be harder to 
understand or modify by itself, thus adding to the overall complexity of 
the system.  An inheritance structure is a tightly coupled structure, 
whereas a hierarchy based in aggregation is loosely coupled.  The 
inheritance structure is tightly coupled as any change to a superclass 
is automatically propagated to all subclasses.   
 
Weak coupling 
Aggregation is weakly coupled as you are able to make changes to an 
individual element’s class (object) that is part of the aggregation, 
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without affecting other elements, such as the containing abstraction 
itself. 
 
2. Are the Methods Defined in Each Class Relevant to the Stated 
Behavior and Semantics of the Class? 
This question illustrates an important query.  In designing a class, we 
should strive to include only methods and data that are relevant to the 
behavior of objects of the class, and the semantics of the class.    The 
naming of the class itself will be critical to making sure you have 
relevant members in the class.  The name of the class implies what 
the class is all about, i.e. what objects of the class will be able to do.  
The name of the class reflects its semantics.  So, to determine 
whether you have relevant methods and data elements in a class, you 
have to start with what the class represents and what its name is.  You 
want to identify the measure of the degree of connectivity among the 
elements of a single class or object.  Entirely unrelated elements of 
abstractions should not be placed together in one class.  Unrelated 
behaviours should not be captured in the same class. A class’ 
responsibility should be easy to determine.  Any ambiguity in the 
interpretation of a class’ responsibility should be taken as a signal that 
the class is implying something other than the designer intended.  This 
will ultimately be confusing to the class’ users.  The responsibilities of 
the class should make sense overall.  They should not go beyond the 
responsibilities implied by the abstraction.  Otherwise, the true 
responsibilities will be obscured by the additional “noise”.  Thus, in a 
class named Cat, we shouldn’t have a method called Bark(). 
 
3. Given the Expected Behavior and the Semantics of the Class, 
are There Enough Methods to Allow this Behavior to be 
Realized? 
It won’t make much sense for you to pick the “correct” abstractions, 
then “under-implement” the classes.  You want to make sure that you 
include all methods necessary to make the object’s functionality 
available to other objects in your solution.  So, you need to review 
whether or not a class or module captures enough of the 
characteristics of the abstraction to allow meaningful and efficient 
interactions.  The responsibility of the class should capture completely 
those responsibilities implied by the abstraction.  Again, this also 
comes from the responsibility of the class.  If you decided a class was 
to be responsible for some piece of your system’s overall functionality, 
make sure you give it the tools (methods, data) to do so. 
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4. Given the Expected Behavior and the Semantics of the Class, 
are there Enough Methods to give Appropriate Access to the 
data in the Class and/or to make the Class “Complete”? 
Your class definition should include enough methods to provide a 
“complete” interface.  This includes defining public accessor methods 
for private data where that data needs to be obtained by other 
objects, as well as defining methods for all of the meaningful 
functionality as implied in the name of the class.  You should identify 
whether the interface of your classes capture all of the meaningful 
characteristics of their abstractions.  You should ensure that the 
responsibility of each class completely captures that implied by the 
abstraction.  
 
5. Are the Methods and data Elements Named Appropriately, 
According to some Convention and/or Indicative of their 
Purpose? 
As mentioned earlier, the interface of a class (object) is the only thing 
that will be visible from outside the class itself.  So, a class should 
have a well-designed interface.  The interface is critical as well-defined 
interfaces can also contribute to reuse.  The methods should be clearly 
named, with the name describing the operation effectively and 
unambiguously.  Different methods should have different names, 
except for overloaded methods).  Care should be given to parameter 
names also.   
 
The class definition should also include offsetting methods.  This 
means if there is a method Get(), there should be a corresponding 
method Set(), unless there is a clear design reason why either should 
not exist.   
 
We should also strive to have “primitive” operations.  This means we 
should try to eliminate operations that only group other operations, 
unless there is a particularly good reason for doing so.  There will be 
occasions where you need to alias functions to maintain backward 
compatibility, for example.  However, these should be explicit 
decisions, not accidental ones.  You should review the degree to which 
the operations of your classes can be efficiently implemented if only 
given access to the underlying representation of the abstraction.  
As designers, we can utilize overloading to give clarity to our design.  
With overloading, we can reuse of operations’ names with different 
signatures.  This can provide easier use of the design and overloading 
provides flexibility to the interface.  
 



 139  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

The use of naming standards for methods and data elements can go a 
long way to clarifying the purpose and scope of class members, as 
long as there is consistency in the use of the convention. 
 
6. Are the Methods and data Defined with the Appropriate 
Access Levels Given the Semantics of the Class? 
We know, from earlier chapters, that we have the ability to decide 
what members are public, private or protected.  But how do we know 
which member should have what access level?  We know by basing our 
decisions on the semantics of the class and the responsibility of the 
class.  As you look at what the functionality of classes is, you also 
have to look at which objects of other classes will interact with each 
other.  This interaction will indicate which methods need to be public, 
as the public methods of a class (object) provide external access to 
the functionality of the class. 

Identifying Class Relationships 
Thus far, we’ve looked at abstraction with an eye to seeing if they are 
similar.  If they are similar, we can define an inheritance hierarchy 
that leverages this similarity.  We can do this because of the 
similarities between what they are.  What do we do if there is no such 
similarity forthcoming?  One idea is that in addition to what thing are 
in common, we can look at what they do in common.  So, we can 
create relationships based on actions, not just based on structure.  By 
looking at a set of abstractions from this perspective, we are able to 
identify potentially valuable relationships.  

Encapsulation 
With encapsulation, we can take the individual objects based on our 
abstractions and hide how those objects are implemented.  This means 
we can separate the interface of an object from the implementation of 
that object.  So, if an abstraction represents a higher level of detail, 
encapsulation prevents inspection of the “lower” level details of the 
object that is based on that abstraction, i.e. how it is implemented.  
This also gives the designer freedom to change or improve the 
implementation of an object without affecting the users of the object.   
 
In reality, encapsulation hides how an object’s operations (methods) 
are implemented (information hiding).  All the user of the object is 
aware of, if the operation is part of the object’s interface, is the name 
of the operation, what parameters it expects and what it returns.  
Indeed, this is all they need to be aware of at this level of detail. 
 
We exploit encapsulation for many reasons.  This is a double-edged 
sword.  Along with the benefit of encapsulation comes the 
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responsibility of designing a good interface for the class.  Great care 
should be taken when deciding which methods should be public (see 
above).   
 
The issue does not stop with the public operations, however.  We have 
to decide which elements should be made protected and private as 
well.  We should make any operation that is never called directly from 
the “outside” private.  If no client directly invokes the operation, it 
may not need to be included in the interface.  This requires further 
clarification, as we do not want to be shortsighted.  If this scenario 
arises, two things may be going on.  If an operation is only invoked 
internally, then we have to decide if it should be private, or if we have 
a case where our interface is not primitive enough.  If we are able to 
remove the operation that invokes the one we are looking at, without 
a loss of functionality that is an option we might take.  This is an issue 
of encapsulation that has an impact on our discussion of hierarchy as 
well.  Once an operation is private, it is not visible to any operations 
outside of that class.  If you decide your class may become a 
superclass and you’d like the operations in the superclass to invoke a 
particular operation, make it protected instead. 
   
Deciding which operations should be protected is also a challenge.  By 
giving an operation this level of visibility, we are laying the foundation 
for the operation to be used by subclasses of the class we are 
designing.  Given that we may be planning for a hierarchy that doesn’t 
necessarily exist, we need to look objectively at the semantics of our 
abstraction.  Depending on our abstraction, we need to identify those 
operations that may need to be modified if this abstraction was to 
eventually become a superclass.  Keep in mind that this level of 
visibility makes it possible for subclasses to invoke these methods, but 
for all other classes, it is the same as private.  There should be no 
conflict between operations included in the interface (public) and those 
you’re deciding should be protected.  

Hierarchical Relationships 
When designing software systems, you’ll notice that many objects may 
have much in common.  They may be essentially the same, except for 
differences of varying degrees.  Understanding the similarities and 
differences will allow the creation of a hierarchy of one sort or another.   
Creating a hierarchy simplifies programming, in as much as you are 
able to leverage previously designed elements and inheriting from 
them and enhancing their functionality.  We can leverage other 
hierarchies such as association and aggregation.  
 



 141  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

Hierarchical relationships work well with Abstraction and  
Encapsulation.  We can visualize and create designs using elements 
from the problem domain.  As a by-product of Abstraction, we can also 
visualize and conceptualize the relationships between elements.  We 
can leverage hierarchy in this way because of its inclusion in the 
object-oriented paradigm.  We can use Hierarchy to represent in our 
abstractions, the relationships that exist in the real world. 
 
Given a new abstraction, we must place it in the context of existing 
class and object hierarchies we have designed.  This involves that 
incremental and iterative process mentioned earlier.  As we progress 
iteratively, we might change our architecture as follows: 
 
1. Class hierarchies become reorganized.  As we examine our 

abstractions and their relationships, we may decide that the basis 
of the hierarchy should change.  This may mean changing the 
superclass entirely, which has a cascading effect on all subclasses.  
We may decide to add functionality to the existing superclass, 
yielding a different hierarchy.  Often, we will find that we have to 
define a different superclass, one with less functionality, i.e. a 
more granular abstraction.  This may yield benefits as more 
narrowly scoped classes may improve the overall level of reuse and 
reliability. 

 
2. Some classes may move up in the hierarchy.  We may decide to 

promote a class to take advantage of the semantics of that 
abstraction in relation to the other classes in the tree.  We may 
need to leverage the attributes and operations defined in that class 
in other classes in the tree, which would warrant promoting it.  
Sometimes, a class may be too general, making inheritance 
difficult.  As we’ve said before, it is much better to have granular, 
narrowly scoped abstractions that are closely related to the real-
world object they represent.  If the scope is too large (the semantic 
gap), we may have difficulties reusing the objects and reliability 
may be affected. 

 
3. We may decide to create a hierarchy where there wasn’t one to 

facilitate leveraging polymorphism in our program.  We may create 
a superclass purely to allow this to happen.   

Persistence 
Depending on the functionality of our system, the ability to save and 
restore the states of the objects in the system may vary from 
important to absolutely critical.  When we talk about saving and 
restoring, what are we really saying.  What really transpires is that to 
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“save” an object, we must transform the data of the object from the 
“in-memory” form to some format that can be persisted (i.e. stored) 
or transmitted somehow.  To “restore” an object, we have to 
reconstitute the “in-memory” view of the object, so it can continue its 
role as part of the functionality of our system.  This may take various 
forms.  Some languages have built-in mechanisms that support object 
persistence39.  The challenge exists when we are using languages like 
C++ that do not provide a direct, built-in way of implementing 
persistence.  
 
In a nutshell, we just need to save the state of an object, in order to 
persist it.  We can create a string-based version of the object, creating 
a delimited string with all of an object’s values.  This is one area in 
which XML has become popular, because we can create an XML string 
version of our object.  This is the idea behind SOAP, the Simple Object 
Access Protocol, which is a defined XML format that is used to persist 
objects.   
 
Another possibility is to save the values of the attributes of the objects 
in relational databases.  I’m sure if we think further, we can find many 
different strategies for implementing persistence.    
 
The other side, of course, is being able to convert from our “saved” 
version of the object back to our “run-time” version of the object.  We 
have to implement methods to restore the value of the object.  At the 
end of the restoration, we have an object that is equivalent to the 
object we saved.   
 
The ability to transform an object from the run-time, in-memory 
version to another version, (i.e. string, etc.) is important, not just to 
“save” the state.  Once we transform the state of an object in this 
way, we can communicate that new state to other systems.  This 
means, for example, that if we can convert an object to a string, we 
can communicate that string to other systems or components on other 
platforms, in different locations.  These other systems or components 
would then have to have the ability to restore objects from the strings, 
and vice-versa.  Indeed, as we will see in Chapter 9, this is an 
important facet of distributed computing. 
 

                                                 
39 Java is an example of such a language. 
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Design Goals 
We utilize object-oriented software development techniques in an 
attempt to improve the overall quality of our developed software.  This 
improved quality includes the following: reusability, reliability and 
extensibility.  Let us look at how some of the concepts we’ve learned 
thus far apply to these goals. 

Reusability 
Object oriented development promotes software reuse.  This reuse 
typically occurs at the component, class and object level.  Many of the 
elements of reuse are due to the presence of hierarchy in the object-
oriented paradigm.  
 
How can we improve reusability?  The discussions in this and previous 
chapters lead us to identify the following as some mechanisms we can 
use: 
 
1. Modularity 
When we make something modular, we are creating a sub-program, 
i.e. one or more classes.  This means, if designed properly, we could 
reuse this sub-program over and over again.  An example of 
modularity employed this way is a .dll in Windows.  Many different 
programs can utilize the same .dll, which can simplify the development 
process.   
 
Modularity on a grander scale comes into play when we include 
distributed systems in our discussion.  Distributed Systems are 
discussed in Chapter 9. 
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2. Classes and Objects 
The very idea of encapsulating a certain amount on functionality in a 
class facilitates reuse, if (and only if) the design of the class is correct.  
This is one of the benefits you can realize when you take care in the 
choice and quality of your abstractions (see above).  The better the 
quality of the abstraction, with regard to the semantics of the class 
and the selection of methods, etc., the more likely it will be suitable 
for reuse.  Big, bloated classes that do too much, i.e. have too much 
functionality, will not be as easy to reuse.  The tighter scoped, better 
defined classes will be easier to reuse by far. 
  
3. Inheritance, Aggregation  and Composition 
With inheritance, we can directly leverage previously developed code.  
This goes way beyond the “cut and paste” technique.  Say a function is 
created which copied code in a second function.  We now have two 
independent functions, even though they share code.  Each of these 
functions needs to be separately maintained.  If we fix a bug in the 
original function, this fix is not propagated to the second function, 
automatically or otherwise.  This is not a good example of code reuse.  
If we look at inheritance however, we see that we can directly 
leverage previously developed code in such a way that any changes to 
the originally developed code (class) is automatically available to new 
code (subclasses). 
 
We can also make any class a superclass.  This means we do not have 
to redefine functionality completely.  We can merely add to it, by 
creating a subclass that has the new elements defined.  It is critical 
then, that our classes, in general, are well defined, so that if we need 
to make them the root in an inheritance chain, their design makes 
them suitable to do so. 
 
If we look at aggregation and composition, we see other possibilities 
for reuse.  With these two elements of hierarchy, we can assemble 
new objects from combinations of previously existing ones.  This 
allows us to create new loosely coupled objects, whereas inheritance 
allows us to create new tightly coupled objects. 

Reliability and Robustness 
To describe software as “reliable”, it must be robust in how it handles 
exceptional situations.  An exception is a potentially severe error 
condition.  Reliable systems must be able to run exception handlers to 
“handle” exceptional situations and recover from them.  Many object-
oriented programming languages provide exception detection and 
handling, greatly aiding the development of reliable software.  Even 
though many languages now support exception handling, using these 
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techniques is not mandatory.  It is not enforced directly by the 
programming language.  Of course, we could let exceptions go un-
handled, thereby causing our systems to crash. 
 
What else can we do to improve the reliability and robustness of a 
system by defensively trying to avoid exceptional situations?  Here are 
some things we can do: 

• Reduce potential for problems by using “privates” for data, and 
controlling access to data via methods 

• Control object creation via constructors, i.e. based on semantics 
and using copy constructors 

Extensibility 
The key to extensibility is to make sure the design is done in a 
“granular” way.  By granular, we mean a design wherein each class’ 
scope is narrowly defined, closely matching the scope of the element it 
abstracts.  This means selecting the correct abstractions and making 
sure each is cohesive.  It also means creating individual classes, the 
result of the object-oriented decomposition, that are at the correct 
level of abstraction.  We should guard against creating classes based 
on abstractions with scopes that are too large in the context of the 
problem.  The drawback of having abstractions that are too large in 
scope is that relatively minor changes could potentially become major 
system changes.  If a class’ scope is too large, we potentially lose the 
ability to create elegant hierarchies.  It is far better to create small, 
tightly scoped classes that are building blocks, than large monolithic 
objects which are not only less extensible, but have less reusability as 
well. 

Additional Design Factors 
In order for our design to be successful, there are other factors we 
have to consider.  These include accounting for non-functional 
requirements and employing design patterns. 

Non-Functional Requirements 
We have to look at more than “just” the abstractions, etc. based on 
the functional requirements of the system.  We also have to include 
“non-functional” requirements.  “Non-functional” requirements include 
items such as environmental requirements.  For instance, these may 
be items such as data center requirements that must be met before an 
application is allowed to be in production in that environment.  Maybe 
there are special classes and/or modules that need to be included to 
allow remote monitoring of the application, logging, etc.  These are not 
items that would be communicated by the user as part of the 



Object-Oriented Analysis and Design  146 

X52.9267-001  Not for Commercial Use   

functional requirements, but they obviously need to be included in the 
design of the solution. 

Modeling 
As we mentioned before, modeling allows us to present a picture, i.e. 
a visual representation of our system.  However, there are added 
benefits of creating and using models during the design process, not 
just in creating artifacts at the end.  We can use modeling to improve 
the design process in the following ways: 

Present and validate architecture 
With class diagrams, it is easier to see how elements of our system 
interact with each other, i.e. the relationships classes have with each 
other.  We can quickly identify from the diagrams what relationships 
are in place and more importantly, whether or not these relationships 
are correct.  This allows us to verify the overall architecture, i.e. static 
structure of our system.   

Model object interaction and behavior at runtime 
With object interaction diagrams such as Sequence and Collaboration 
diagrams, we can model how objects will behave at runtime, as they 
collaborate to provide functionality.  It is easy to see and verify that 
the objects are providing the functionality, as expected. 
 
To shine even more light on an individual object, we can use State 
diagrams to examine individual objects greater detail. 

Design Patterns 
We utilize design patterns all the time.  A design pattern is a 
generalized sequence of steps to be used to solve a commonly 
occurring problem.   
 
Typically, patterns do not extend to specific code for a particular 
solution.  Instead, it presents a solution in a more general form.  When 
we utilize patterns, we must modify the pattern to fit our particular 
problem.  This may require us to supply details that may have been 
missing from the original pattern.   
 
As we gain experience and knowledge, the patterns that come from 
the solutions we’ve developed are at our disposal. We can use these in 
solving new problems.  The presence of patterns and the ability to use 
them make the solution development easier.    
 
Patterns exist at all levels.  There are large, architectural patterns such 
as component-based development models, n-tiered models 
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(generalization of the client-server model), layered models, etc.  On a 
smaller scale, patterns may represent particular programming 
constructs.   
 
For object-oriented development, patterns involve classes and objects.  
The classes in the pattern represent the elements of the problem the 
pattern is a solution for.  The pattern captured the relationships among 
the classes.  These relationships are based on aggregation, inheritance 
and association and are all in the context of the problem to be solved.   
 
There are many design patterns available for us to apply to problems.  
Some of the more popular patterns are listed below: 

Containers 
A container is a design pattern that describes a class that manages the 
collection of other objects.  The interface of the class provides the 
expected behavior with operations to provide a count of objects, 
append, delete (all or a specific object).  Containers also support the 
notion of GetFirst() and GetNext(), to deliver the objects of the 
container in some predetermined order.   
 
Containers are very useful abstractions to include in a design.  They 
may be used anywhere a collection of objects (not necessarily all from 
related classes) is required.  The container’s operations allow the easy 
inspection of the contents. 

Wrappers 
In Chapter 1, we presented the notion of using an abstraction to 
represent legacy systems40 with which object-oriented systems 
interact41.  This technique may be expressed as the Wrapper pattern.  
In the Wrapper pattern, we define a set of public operations that 
represent the operations of the legacy system.  These operations are 
the interface of the abstraction, the implementation being the legacy 
system itself.  Of course, with Encapsulation, this implementation 
detail is hidden.  The operations of the abstractions would be 
implemented by making function calls to the legacy system.  This 
pattern is flexible enough to support object-relational interactions. 

Object Factories 
The Container pattern above describes a class that manages a set of 
objects.  If we extend this functionality to include the responsibility of 

                                                 
40 Non-object-oriented systems in general. 
41 Discussed in detail later in this chapter. 
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creating objects, we have the Object Factory pattern.  The Object 
Factory would create instance of specific classes, and in some cases, 
may be extended to include management and tracking of the created 
objects. 

Model-View-Controller 
The Model-View-Controller (MVC) pattern was introduced in the late 
1980’s and has become popular as a pattern for Graphical User 
Interfaces (GUI’s).  The pattern separates user input, presentation and 
data into separate parts.  Controllers are responsible for the collection 
of user inputs.  The Model contains the core functionality and data of 
the application.  The View represents the various views or presentation 
of the data (in the Model).  Effectively, MVC separates data from 
presentation, which fits well with client-server architectures. 

Design Elements 
There are various “design elements” that we’ll mention in this section. 
The term “design element” is being used to describe various 
structures, options and techniques that we have at our disposal. 

Strategic vs. Tactical Decisions 
A strategic decision is one with sweeping architectural implementations 
–i.e. one with large consequences across the design.  Strategic 
decisions affect the long-term view of your system.  Strategic 
decisions are based on a full understanding of the requirements, an 
understanding of the environment in which the system will operate 
and expectations about the evolution of the system42.  At its most 
basic, strategic decisions will affect which abstractions become key 
abstractions.  By thinking strategically, we will try to find a “best fit”, 
among all of the attributes such as reuse, reliability, etc.  Our strategic 
view will be helped by having properly scoped abstractions.   
Depending on your overall strategy43, changes to a class’ behavior (i.e. 
functionality), error-handling mechanisms (exception handling), etc. 
are examples of strategic decisions.   
 
A tactical decision is one that is more localized, i.e. has fewer 
consequences.  “One-off” decisions or decisions about a particular 
algorithm to implement a method are tactical decisions.  Earlier, we 
said that encapsulation hid the implementation and we could safely 
implement a specific algorithm for a sorting operation, away from the 

                                                 
42 Many other factors affect strategic decisions.  The platform(s) for deployment, databases, planned 
upgrades/new features.  There are usually a host of environmental issues that must be considered also. 
43 It is important that there is one that governs the development effort. 
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view from outside.  The selection of a particular sorting operation 
could be a tactical decision, as its effects may be localized. 

Additional Considerations 
When designing a system, there are many additional considerations 
that we must take into account.   

Designing for Interoperability 
Interoperability is the ability of systems to communicate, i.e. to 
interoperate.  As requirements become more complicated, we have the 
need to leverage data owned by other systems.  These other systems 
may be databases, mainframe systems, client-server systems, object-
oriented systems, web systems, etc.  If we are designing an object-
oriented system, how do we account for these systems, especially the 
non-object-oriented?  Strictly speaking, there is no “simple” solution.  
There are however, certain “patterns” that we can follow44.  The 
approach selected depends on which environmental issues are to be 
addressed. 

Relational Databases 
One scenario might be to communicate with relational databases45.  
This may be because there is important data already stored in existing 
databases, on various platforms.  There are a few approaches we can 
take to integrate this data into our system.  We may create an 
abstraction to represent the entire data store.  This means, there 
would be one abstraction representing a database.  An alternate 
approach is to include operations in exiting abstractions that represent 
the operations on the database46. 
 
 If we choose the approach of one abstraction representing the 
database, we have to decide how to implement the operations of this 
class, given the scope of the abstraction.  We have to be careful about 
which operations we include in our interface.  Obviously, if we interact 
directly with the database, we have the full capability of SQL at our 
disposal.  This would not be the most elegant solution.  In this case, 
the operations would be highly dependent on SQL.  Though it seems 
easier to implement such a “pass through” interface, it may limit 
flexibility, as we’ll see. 
 

                                                 
44 See previous discussion of Design Patterns in this chapter. 
45 Non object-oriented. 
46 We are ignoring details such as libraries and infrastructure used to communicate with the database 
management system.  For the purpose of our discussion, we are assuming these exist.  These issues are at a 
lower level of abstraction than our discussion. 
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We could, instead, determine which operations on the data are 
required.  For example, we can determine the necessary queries, 
updates, deletions, insertions.  If the system is of even marginal 
complexity, there may be many of these database operations that are 
required.  We would have to determine how to present these 
operations in the interface of our class.  A particular business 
operation might include a combination of these operations, in addition 
to supplying parameters to the operations.  The business operations, 
which may or may not correspond directly to each of the database 
operations, may define the public operations in our abstraction.  
Indeed, some combination of these would comprise the interface of 
our class.  
 
If we construct the abstraction as immediately above, we have a few 
advantages.  For example, all of the details of the database are 
ultimately hidden as the implementation details of the class.  This 
means, the database could be replaced or changed radically, with no 
impact on the other classes, unless the interface(s) are changed as a 
result. 
 
What about attributes and private or public operations (for either 
case)?  The need for these would be determined based on what the 
complete functionality of the class is.  

Legacy Systems 
We can employ a similar strategy to integrate relational data into 
object-oriented systems.  In general, we may create abstractions that 
represent the other systems.  The operations that we define on the 
abstraction would correspond to the operations that we need to 
execute in the other system. 
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Fig 6.1 Database Abstraction 

In practical terms, there are many issues to be addressed when we 
talk of integrating disparate systems.  We have to consider factors 
such as what platforms the systems are on, what infrastructure exists 
between systems, i.e. communication, protocols, etc.   What we need 
is a set of services that would allow us to communicate effectively 
between systems, across processes and platforms.  Effectively, these 
services allow us to distribute the overall processing across many 
platforms, even though these platforms may be geographically distant.  
As a result, these services must be robust and able to handle the 
communication that needs to happen across platforms as different as 
mainframes and PC’s.  In Chapter 8, we will investigate this in our 
discussion of Components. 

Language Features 
Many languages provide “pre-made” constructs (classes) that we can 
use in our design phase.  Some of these are direct construct of the 
language.  Others are provided as library routines, separately.  Some 
of these classes are listed below. 
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String Classes 
Some object-oriented languages provide string classes.  These classes 
allow string manipulation functions including tokenization47, searching, 
replacing, etc.  Having these utility classes “pre-made” frees us from 
having to create these “from scratch”. 
Collection (container) Classes 
Many languages provide “off-the-shelf” collection classes that we can 
use in our design.  Collection classes typically manage their own 
memory.  These collection classes include the following. 
 
Generic Collection Classes 
These classes support un-ordered grouping of other objects.  The 
collection classes (and their objects) allow us to aggregate groups of 
objects, not necessarily all from the same class or inheritance 
structure.  Collection classes such as these typically provide methods 
to add to the collection, delete from the collection, provide a current 
count, etc.  These operations would be part of the interface of the 
collection object. 

Sets 
A set is a specific type of collection where the contents of the class are 
ordered.  Typically, no duplicates are allowed and in some cases, sets 
are implemented such that there can only be one null value. 
 
Lists 
List objects hold an ordered collection of objects as well.  However, a 
list is typically sequentially accessed.  This means you can only go 
from one object in the list to another, the next in the order.  Some 
lists also support moving backward, the previous in the order. 
 
Maps 
Maps are collection objects which maintain a <key,value> pair in the 
object.  This means each object in the collection is associated with a 
key.  This key is used to retrieve the value from the map.  No objects 
are added to the map without a corresponding key. 
 
Operator overloading 
Earlier, we discussed function (method) overloading.  Operator 
overloading is similar in concept.  Think of an operator as a function 
with an implicit operand (parameter) and zero or more explicit 
operands.  Then overloading an operator becomes the same as 
overloading a function.  We are changing the parameter list.  Why 
                                                 
47 A string is tokenized when it is broken up sequentially into tokens (groups of characters), separated by 
delimiters. 
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would we overload operators?  To more closely adhere with the 
semantics of our abstractions.  Say we have a class that needs to 
support the logical addition and subtraction operations, based on the 
real-world objects it represents.  We could define operations Add() and 
Subtract() in the class to provide this functionality.  Our other 
alternative, if operator overloading is supported, is to define 
overloaded operators that are the functional equivalents to the Add() 
and Subtract() functions.  Overloading the operators, if available, does 
not add new functionality.  Instead, it contributes, sometimes greatly, 
to the overall clarity and readability of the code. 
Parameterized Classes 
Depending on the language or environment being used, some of the 
collection classes may be implemented as parameterized classes.  
Parameterized classes, if supported by a particular programming 
language, can be important tools for us as designers.  In a 
parameterized class, the fundamental types used in implementing the 
class are passed in as parameters when creating an instance of the 
class.  So, if we wanted to create two lists, each of which would hold 
completely unrelated objects, we could create one parameterized 
class.  We would then create instances, each with the appropriate 
type. 
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Stack

Parameter1:long

-attribute1
#attribute2
+attribute3

Stack

Parameter1:int

 
 

Fig 6.2 Parameterized class 

 

Sample Project 
Let us apply what we’ve learned so far to our example.  As we evolve 
our design, there are some questions that now need to be answered.  
The way we answer these questions will obviously influence our 
design.  We may also discover that our requirements do not 
completely specify certain areas.  In this case, we may have to make 
some assumptions.   Our journey continues below: 
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1. Adding a new student’s information: Where should the method 
or methods corresponding to this belong?  Are the “student” 
classes responsible for this, or is the System class responsible 
for this?  What does it mean to have the “student” classes 
responsible for this activity?  That means an object of the correct 
type of student would have to be instantiated and initialized 
properly.  Let us think of semantics also.  Is it reasonable to 
expect a student object to know how to add itself to the system?  
Also, consider the sequence of events.  Something (i.e. the All 
Students object) would have the instance of the student object 
created then the student object would know how to add itself to 
the list of other student objects maintained by the system.  
Doesn’t seem reasonable.  Instead, it appears that the method 
to add a new student to the system should have the correct 
student object instantiated and initialized (probably via the 
correct constructor), and then add the student to the list 
managed by the All Students object, all within the System 
object.  So let’s call the method “AddNewStudent()” and add it 
to the All Students class.  Let us replace our “SetStudents()” 
accessor method with this method. 

 
2. Searching and displaying a student’s information: This is an 

operation of the entire list of students, held within the System 
object.  As a result, this method, which we will call 
“SearchStudents()”, will be inside the All Students class also. 

 
3. Deleting a student: As before, this is an operation on the entire 

list of students.  Let’s call this method “DeleteStudent()” and 
include it in the All Students class. 

 
4. Changing/assigning classes and credits to students:  Let us 

examine what we have to do to change student information.  We 
have to locate the particular student object by some means then 
access the information in that object to change it.  As the list is 
maintained in the System object the method or methods to 
change student information should be there also.  Let’s assume 
we have one method: ChangeStudentClassesAndCredits(), which 
we will add to the All Students class.  This method will access 
the access methods of the student object to indirectly 
manipulate the private data.   

 
5. Changing/assigning a student’s major: This is similar to the 

methods we’ve defined immediately prior to this.  Using the 
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same logic, let us call this method ChangeStudentMajor() and 
add it to the All Students class. 

   
6. Changing/assigning a student’s type: This method will cause a 

student’s type to change from Typical to Faculty or Transfer, etc.  
This involves creating and deleting objects, i.e. deleting an 
existing object and creating a replacement.  This should also be 
in the All Students class.  Let us call this method 
ChangeStudentType(). 

 
7. Changing/assigning a student’s status, i.e. full-time or part-time 

according to the rules above: Same reasoning as above.  Let’s 
call the method ChangeStudentStatus() and add it to the All 
Students class. 

 
8. Producing reports: We need to provide a total of seven (7) 

reports.  Let’s make each report be generated by a method, 
named as follows: 
SortedFullTimeStudents() 
SortedPartTimeStudents() 
NumberofStudentsOfEachType() 
SortedNamesAndAddresses() 
ReversedNamesAndAddresses() 
StudentsMajorsAndCredits() 
StudentsCostForTheSemester() 

 
So, let’s list our classes again, including all of our methods: 
 
Class TypicalStudent 
Attributes: 
Student Name (Object of class Name) 
Student Address (Object of class Address) 
ID 
Majors (Object of class Student Majors)  
Subjects (Object of class Student Subjects) 
Grade 
Discount 
 
Methods: (All public) 
GetStudentName() 
SetStudentName() 
GetStudentAddress() 
SetStudentAddress() 
GetStudentID() 
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SetStudentID() 
GetStudentMajors() 
SetStudentMajors() 
GetStudentSubjects() 
SetStudentSubjects() 
GetStudentGrade() 
SetStudentGrade() 
GetStudentDiscount() 
SetStudentDiscount() 
 
Class FacultyStudent 
Attributes: 
All attributes of TypicalStudent 
Subject Taught 
Date Employed (Start of employment - used to calculate length of 
service) 
 
Methods: 
All methods of TypicalStudent 
GetSubjectTaught() 
SetSubjectTaught() 
GetDateEmployed() 
SetDateEmployed() 
 
Class TransferStudent 
Attributes: 
All attributes of TypicalStudent 
Home college (Object of class College) 
 
Methods 
All methods of TypicalStudent 
GetHomeCollege() 
SetHomeCollege() 
 
Class HomeCollege 
Attributes: 
College Name 
College Address (Object of class Address) 
 
Method: 
GetCollegeName() 
SetCollegeName() 
 
Class Name 
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Attributes: 
First Name 
Middle Initial 
Last Name 
 
Methods: 
GetFirstName() 
SetFirstName() 
GetMiddleInitial() 
SetMiddleInitial() 
GetLastName() 
SetLastName() 
 
Class Address 
Attributes: 
Street Address 
City 
State 
Zip 
 
Methods: 
GetStreetAddress() 
Set StreetAddress() 
GetCity() 
SetCity() 
GetState() 
SetState() 
GetZip() 
SetZip() 
 
Class Subject 
Attributes: 
Subject Name  
Credits 
 
Methods: 
GetSubjectName() 
SetSubjectName() 
GetCredits() 
SetCredits() 
 
Class Major 
Attributes: 
Name_of_Major 
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Methods: 
GetMajor() 
SetMajor() 
 
Class System 
Attributes: 
Majors (Object of class All Majors) 
Subjects (Object of class All Subjects) 
All Students (List of objects representing all types of students) 
 
 
Methods: 
GetMajors() 
SetMajors() 
GetSubjects() 
SetSubjects() 
GetStudents() 
SortedFullTimeStudents() 
SortedPartTimeStudents() 
NumberofStudentsOfEachType() 
SortedNamesAndAddresses() 
ReversedNamesAndAddresses() 
StudentsMajorsAndCredits() 
StudentsCostForTheSemester() 
 
Class StudentMajors 
Attributes: 
Majors 
 
Methods: 
GetMajors() 
SetMajors() 
 
Class StudentSubjects 
Attributes: 
Subjects 
 
Methods; 
GetSubjects() 
SetSubjects() 
 
Class AllMajors 
Attributes: 
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Majors 
 
Methods: 
GetMajors() 
SetMajors() 
 
Class AllSubjects 
Attributes: 
Subjects 
 
Methods: 
GetSubjects() 
SetSubjects() 
 
Class AllStudents 
Attributes: 
Students 
 
Methods: 
AddNewStudent() 
SearchStudent() 
DeleteStudent() 
ChangeStudentClassesAndCredits() 
ChangeStudentMajor() 
ChangeStudentType() 
ChangeStudentStatus() 
 
There are other methods to consider.  Let us explicitly discuss the 
constructors and destructors for each of our classes. 

Constructors 
There are three “student-related” classes, Typical Student, Faculty 
Student and Transfer Student.   
 
The TypicalStudent class represents all typical students.  It is also, by 
design, the base class of our student hierarchy.  So, our constructor 
will have to initialize the attributes of TypicalStudent.  How do we 
initialize objects of the TypicalStudent class?  If an object of this class 
represents an individual student then which attributes are “must 
haves”?  In this context, it would not make sense to have a 
TypicalStudent object with no name and address.   Neither would it 
make sense to have a TypicalStudent object without an ID.  However, 
we could conceivably have a student object without a list of majors or 
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subjects, a grade or a discount.  These could be added later, and in 
fact, the ability to modify these is part of the overall requirements.   
We can use constructors to assist here.  Also, the requirements tell us 
we need to provide for changes in type, i.e. changing from 
TypicalStudents to Faculty/Transfer and vice versa.  We can use a 
constructor to assist here as well.  We can define a constructor that 
will allow us to create an object of TypicalStudent from an object of 
Faculty or Transfer.  So we could have three constructors, as follows: 
TypicalStudent(name, address, ID) 
TypicalStudent(FacultyStudent) 
TypicalStudent(TransferStudent) 
 
Why are we using constructors to convert between base class and 
subclass objects?  The decision is based on the need to have an object 
that represents each type of student, in keeping with our design thus 
far.  We could access FacultyStudent and TransferStudent objects from 
a reference (or pointer) to a TypicalStudent object, but the underlying 
object would not be a TypicalStudent object.  This is one case where 
we’re not trying to exploit inheritance and polymorphism. 
 
For FacultyStudent and TransferStudent objects, the ideas above hold 
also.  As such, for each, we would need a constructor that only allows 
objects of that class to be created with a name, address and ID.  As 
well, we will include constructors for FacultyStudent and 
TransferStudent that would allow for conversions as well. 
 
We then have the following: 
FacultyStudent(name, address, ID) 
FacultyStudent(TypicalStudent) 
FacultyStudent(TransferStudent) 
 
TransferStudent(name, address, ID) 
TransferStudent(FacultyStudent) 
TransferStudent(TypicalStudent) 
 
We may also define other constructors as necessary.  For example, we 
may have a need to define copy constructors, i.e. constructors that 
take an object of the same class and make a copy of the attributes.  If 
we need any of these later on, we’ll add them. 
 
HomeCollege 
What should our constructor for the College class be defined as?  The 
College class has an attribute for name and an attribute for address.  
If we decide that an object of the college class should not be created 
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without the name and address of the home college, then we need to 
have a constructor that does this.  So we would have the following: 
Home College(name, address) 
 
We do not have a requirement for conversions or copies, etc.  So we’ll 
keep this as our only constructor. 
 
Name 
For the Name class, we should not have an object created without the 
First and Last names.  Not all people have a middle initial.  So, it 
seems we need two constructors, as follows: 
Name(first, last) 
Name(first, middleinitial, last) 
 
Address 
For the Address class we should not have an object created without 
the Street, City, State and Zip fields.  This obviously is a US-centric 
model.  In any case, our constructor can ensure this, as follows: 
Address(Street, City, State, Zip) 
 
Subject 
We should create objects of the Subject class without a Name and 
Credits.  We’re assuming each subject available has an explicit number 
of credits associated, greater than or equal to zero.   So, we use our 
constructor as follows: 
Subject(Name, Credits) 
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Major 
We should create objects of the Major class without a name.  So, we 
use our constructor as follows: 
Major(Name_of_Major) 
 
System 
The System class is a very critical class in our design.  As a result, the 
constructor for our system class is important as well.  Let’s examine 
this constructor.  So far, we’ve decided that the system class will 
manage the lists of subjects, majors and students.  In addition, the 
“reporting” functionality will be in the System class.  How then, do we 
employ a constructor to properly create an object of the system class?  
Our constructor needs to properly initialize all of the lists managed by 
that System object.  The constructor only has to initialize the list to be 
empty.  What about parameters?  There aren’t any that we would 
identify at this point.  So, it seems we need to implement the following 
constructor: 
System() 
 
StudentMajors 
This class represents the list of majors for a particular student.  The 
constructor only has to initialize the list to be empty.  There are no 
parameters.  So, we need the following constructor: 
StudentMajors() 
 
StudentSubjects 
This class represents the list of subjects for a particular student.  The 
constructor only has to initialize the list to be empty.  There are no 
parameters.  So, we need the following constructor: 
StudentSubjects() 
 
AllMajors 
This class represents the list of all majors available to any student.  
The constructor only has to initialize the list to be empty.  There are 
no parameters.  So, we need the following constructor: 
AllMajors() 
 
AllSubjects 
This class represents the list of all subjects available to any student.  
The constructor only has to initialize the list to be empty.  There are 
no parameters.  So, we need the following constructor: 
AllSubjects() 
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AllStudents 
This class represents the list of all students.  The constructor only has 
to initialize the list to be empty.  There are no parameters.  So, we 
need the following constructor: 
AllStudents() 

Destructors 
We need to consider how we will “clean up after ourselves”.  What 
does this mean?  This is more related to implementation.  Depending 
on our choice of implementation for our lists, i.e. static or dynamic, we 
may need to explicitly define methods (i.e. destructors) that deallocate 
the memory allocated for each object on our list.   Again, this may be 
a very good idea for each class that manages a list: System, All 
Subjects, All Majors, Student Subjects and Student Majors. 

Checkpoint 
So, our list of classes, attributes and methods are now: 
 
Class TypicalStudent 
Attributes: 
Student Name (Object of class Name) 
Student Address (Object of class Address) 
ID 
Majors (Object of class StudentMajors)  
Subjects (Object of class StudentSubjects) 
Grade 
Discount 
Methods: (All public) 
TypicalStudent(name, address, ID) 
TypicalStudent(FacultyStudent) 
TypicalStudent(TransferStudent) 
GetStudentName() 
SetStudentName() 
GetStudentAddress() 
SetStudentAddress() 
GetStudentID() 
SetStudentID() 
GetStudentMajors() 
SetStudentMajors() 
GetStudentSubjects() 
SetStudentSubjects() 
GetStudentGrade() 
SetStudentGrade() 
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GetStudentDiscount() 
SetStudentDiscount() 
 
Class FacultyStudent 
Attributes: 
All attributes of TypicalStudent 
Subject Taught 
Date Employed (Start of employment - used to calculate length of 
service) 
 
Methods: 
All methods of TypicalStudent 
FacultyStudent(name, address, ID) 
FacultyStudent(TypicalStudent) 
FacultyStudent(TransferStudent) 
GetSubjectTaught() 
SetSubjectTaught() 
GetDateEmployed() 
SetDateEmployed() 
 
Class TransferStudent 
Attributes: 
All attributes of TypicalStudent 
Home college (Object of class HomeCollege) 
 
Methods 
All methods of TypicalStudent 
TransferStudent(name, address, ID) 
TransferStudent(FacultyStudent) 
TransferStudent(TypicalStudent) 
GetHomeCollege() 
SetHomeCollege() 
 
Class HomeCollege 
Attributes: 
College Name 
College Address (Object of class Address) 
 
Method: 
HomeCollege(name, address) 
GetCollegeName() 
SetCollegeName() 
 
Class Name 
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Attributes: 
First Name 
Middle Initial 
Last Name 
 
Methods: 
Name(first, last) 
Name(first, middleinitial, last) 
GetFirstName() 
SetFirstName() 
GetMiddleInitial() 
SetMiddleInitial() 
GetLastName() 
SetLastName() 
 
Class Address 
Attributes: 
Street Address 
City 
State 
Zip 
 
Methods: 
Address(Street, City, State, Zip) 
GetStreetAddress() 
Set StreetAddress() 
GetCity() 
SetCity() 
GetState() 
SetState() 
GetZip() 
SetZip() 
 
Class Subject 
Attributes: 
Subject Name  
Credits 
Subject Grade 
 
Methods: 
Subject(Name, Credits) 
GetSubjectName() 
SetSubjectName() 
GetCredits() 
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SetCredits() 
 
Class Major 
Attributes: 
Name_of_Major 
 
Methods: 
GetMajor() 
SetMajor() 
 
Class System 
Attributes: 
Majors (Object of class All Majors) 
Subjects (Object of class All Subjects) 
All Students (List of objects representing all types of students) 
 
Methods: 
System() 
GetMajors() 
SetMajors() 
GetSubjects() 
SetSubjects() 
GetStudents() 
SortedFullTimeStudents() 
SortedPartTimeStudents() 
NumberofStudentsOfEachType() 
SortedNamesAndAddresses() 
ReversedNamesAndAddresses() 
StudentsMajorsAndCredits() 
StudentsCostForTheSemester() 
 
Class Student Majors 
Attributes: 
Majors 
 
Methods: 
StudentMajors() 
GetMajors() 
SetMajors() 
 
Class Student Subjects 
Attributes: 
Subjects 
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Methods: 
StudentSubjects() 
GetSubjects() 
SetSubjects() 
 
Class AllMajors 
Attributes: 
Majors 
 
Methods: 
AllMajors() 
GetMajors() 
SetMajors() 
 
Class AllSubjects 
Attributes: 
Subjects 
 
Methods: 
AllSubjects() 
GetSubjects() 
SetSubjects() 
 
Class AllStudents 
Attributes: 
Students 
 
Methods: 
AllStudents() 
AddNewStudent() 
SearchStudent() 
DeleteStudent() 
ChangeStudentClassesAndCredits() 
ChangeStudentMajor() 
ChangeStudentType() 
ChangeStudentStatus() 
 
Let’s look at our class diagrams.  We will only depict the attributes of 
each class, as well as the hierarchical (i.e. inheritance and 
composition) relationships between classes. 
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Fig 6.1 Student class relationships 

Part A depicts the inheritance relationship between the “student” 
classes.  In addition, we can see the associative relationships.  Due to 
the inheritance relationship between the sub-classes and base class, 
the associative relationships that involve the base class are inherited 
by the sub-classes as well.  Some of the relationships are 1-1, i.e. 
name, address, etc.  Others are 1-many, i.e. between the class 
managing a list of subjects and individual subjects.



 169  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

Part B: 
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Fig 6.2 System class relationships 

Part B depicts the relationships involving the system class.  Here also, 
we can see the associative relationships.  Again, some of the 
relationships are 1-1, while others are 1-many. 

Persistence and Data Management 
So far, we have not spent any time with regard to persistence or data 
management.  Let’s look at these separately. 
 
We know from the initial requirements that the system is expected to 
maintain student data in a relational database.  From our analysis, we 
understand what student data needs to be maintained.  If we take a 
linear view of the data, we have the following 
 
For class TypicalStudent: 
Student Name (object of class Name) 
Student Address (object of class Address) 
ID 
Majors (object of class Majors - aggregate) 
Subjects (object of class Subjects - aggregate) 
Overall Grade 
Discount 
 
For a FacultyStudent: 
All attributes of TypicalStudent 
Subjects Taught (object of class Subjects) 



Object-Oriented Analysis and Design  170 

X52.9267-001  Not for Commercial Use   

Date Employed 
 
 
For TransferStudent: 
All attributes of TypicalStudent 
Home college (Object of class College) 
 
For HomeCollege: 
College Name 
College Address (Object of class Address) 
 
For class Name: 
First Name 
Middle Initial 
Last Name 
 
For class Address: 
Street Address 
City 
State 
Zip 
 
For class Major: 
Name of Major 
 
For class Subject: 
Subject Name  
Credits 
Subject Grade 
 
Given that our available database is relational, we have to map the 
data defined in our classes (multi-dimensional) into a 2-dimensional 
model.  This will give us some insight into the tradeoffs and 
compromises we have to make in the real world. 
 
Our unique identifier is the student ID.  No two students will have the 
same student ID.  For simplicity, let’s define the ID as a number, 
though it could just as equally have been a character string.  We can 
then organize the data relevant for a student with the key being the 
student ID.   
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A database schema48 may be designed that identifies a table for each 
of the abstractions listed above, with a few notable exceptions.  Our 
list is as follows: 
 
Table TypicalStudent (corresponds to class TypicalStudent): 
ID 
First Name 
Middle Initial 
Overall Grade 
Discount 
 
Table FacultyStudent(corresponds to class FacultyStudent): 
ID 
Date employed 
 
Table TransferStudent(corresponds to class TransferStudent): 
ID 
Home College Name 
Home College Street Address 
Home College City 
Home College State 
Home College Zip 
 
Table StudentAddress(corresponds to class Address): 
ID 
Street Address 
City 
State 
Zip 
 
Table StudentMajor(corresponds to class StudentMajor): 
ID 
Name of Major 
 
Table StudentSubject(corresponds to class StudentSubject): 
ID 
Subject Name  
Credits 
Subject Grade 
 
You’ll notice that we do not have a separate table for Name.  We’ve 
included the attributes of the Name class in the TypicalStudent table.  

                                                 
48 A database layout. 
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While this does simplify our database schema, it limits association 
between name and ID to 1:1.  So, students are limited to using one 
name only49.  If this was deemed insufficient, we could add another 
table.  In practical terms, this would be unlikely.   
 
We do not have a table for HomeCollege either.  How is this possible?  
As was done for Name, the data from the HomeCollege class has been 
included in the TransferStudent table.  The overriding assumption is 
that we keep track of the last college the student transferred from 
only. 
 
Each of our tables will have primary keys defined.  The list of keys is 
below: 
 
Table TypicalStudent: 
ID 
 
Table FacultyStudent: 
ID 
 
Table TransferStudent: 
ID 
 
Table StudentAddress: 
ID 
Street Address 
 
Table StudentMajor: 
ID 
Name of Major 
 
Table StudentSubject: 
ID 
Subject Name  
 
Earlier, we defined the student ID as the unique identifier to be used 
for students.  Since it is unique, it is the only value required as a key 
for TypicalStudent, FacultyStudent and TransferStudent.  For 
StudentAddress, we add the value of the street address to the key.  
The assumption here is that a student may have different addresses, 
i.e. home, dorm, etc.  For StudentMajor, the key includes the ID and 
the name of the major.  Likewise, for StudentSubject, the key includes 

                                                 
49 It is a good assumption that students would not give multiple aliases at time of registration. 
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the ID and the name of the subject.  We use a multi-valued key in 
each table where we might have multiple rows existing with the same 
ID, as is possible in StudentMajors, StudentSubjects and 
StudentAddresses. 
 

TypicalStudent

PK ID

first_Name
middle_Initial
overall_Grade
discount

FacultyStudent

PK,FK1 ID

date_Employed
TranserStudent

PK,FK1 ID

college_Name
college_Street_Address
college_City
college_City
college_State
college_PostCode
college_Country

StudentMajor

PK,FK1 ID
PK name_Of_Major

StudentAddress

PK,FK1 ID
PK street_Address

city
state
post_Code
country

StudentSubject

PK,FK1 ID
PK name_Of_Subject

credits
subject_Grade

 
 

Fig 6.3 Entity-Relationship diagram for student data 

The diagram above expresses the relationships that exist between 
tables. 
 
There are other data values that we need to store in our database. We 
need to store the complete lists of classes and majors, in addition to 
keeping information to be used in calculating discounts and student 
costs.  These additional tables are outlined in the diagram below.   
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AllMajors

PK major_ID

name

AllSubjects

PK subject_ID

subject_Name
credits
 

SubjectCost

unit
cost

StudentDiscount

years
discount

SubjectMajor

PK,FK2 subject_ID
PK,FK1 major_ID

 
 

Fig 6.4 Additional entities 

 
Given this schema, how do we implement functionality that we can use 
to save to and restore from our relational database?  We made some 
trade-offs in an attempt to “flatten” the data so it would fit into a 
relational model.  We now need to build a bridge between our 
relational model and our object model.  In practical terms, this means 
we need to implement methods to transform object-based data into 
relational form and vice-versa. 

Student-Related Data 
If we want to store the state of a student, we need to save the states 
of the various objects that are cooperating to give us our overall view 
of a student and their related information.  This means each class will 
have to have methods to save to and restore from our relational 
database.  Let’s look at this in more detail, reviewing each class’ needs 
individually.  Our goal is to understand where to implement our 
methods.  We will call the method to save data Save() and the method 
to restore data, Restore()50. 
                                                 
50 See Chapter 2.  
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As complicated as this might sound, in this case it is actually quite 
straightforward as we have effectively constructed a 1:1 
correspondence between entities and classes51.  However, we have to 
figure out how to create Name and HomeCollege objects.  In addition, 
we have to decide what kind of abstraction should represent the 
database in our design. 
 
TypicalStudent 
Saving Data 
This class needs to store data in the TypicalStudent table.  There is a 
direct correlation between this data and the data in the TypicalStudent 
class.  However, as we mentioned before, we included information that 
we would expect to find in the name and address attributes as well.  
So, when we save an object of this class, we are indeed saving the 
objects of classes Name, Address, Student Majors, and 
StudentSubjects() that are embedded in any object of TypicalStudent, 
in addition to saving the other attributes in the TypicalStudent class.  
Saving a TypicalStudent object involves obtaining and saving all of the 
values from the attributes.   
 
As part of the implementation, we must also determine whether we 
are doing an insertion or an update.  This means we must be able to 
determine if the object being persisted represents a new student or an 
existing student.  We must devise a mechanism that allows us to do 
that.  In either case, we must be able to construct the necessary SQL 
statements that will allow us to insert or update multiple tables.  The 
logical view of a student includes the TypicalStudent, StudentAddress, 
StudentMajor and StudentSubject tables.  We know from the 
requirements that the minimum information that we can enter for a 
student is their name and address.  As a result, the SQL statements to 
manipulate the corresponding tables should be included in a 
transaction, as we want to ensure successful inserts or updates for all 
tables involved. 
 
Restoring Data 
How do we create an object of the TypicalStudent class using data 
held in our database?  We know that the primary key in our 
TypicalStudent table is the student ID.  So, in order to retrieve an 
existing student, we must have the ID.  We also mentioned earlier that 
                                                 
51 There are indeed similarities between entities and classes.  An entity is itself an abstraction.  However, 
while classes are abstractions also, they include data and the operations defined on that data and can 
harness the power of Encapsulation and the other attributes of object-orientation.  Strictly speaking, this, in 
addition to the semantics as defined for a class, differentiates tables from classes. 
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we would support searching based on a student’s last name.  In this 
case, we would also accept a last name, doing whatever we needed to 
do to match last name to ID. 
 
Once we have the ID of the student, we need to execute SQL 
statements to retrieve data from all student-related tables.  The data 
we retrieve is a “flat” representation of data that needs to be kept in 
multiple objects.  Practically speaking, this means we need to be able 
to construct Name and Address objects, in addition to StudentMajor 
and StudentMajor objects.   
 
FacultyStudent 
Saving Data 
TypicalStudent is also the superclass in our inheritance hierarchy.  We 
have the opportunity to leverage this implementation or override it in 
the FacultyStudent class.  Based on our implementation of Save() in 
the superclass, we will need to override this in  the FacultyStudent 
class as that implementation executes SQL statements which do not 
work for the FacultyStudent class.  All the steps we did for the 
TypicalStudent class are still valid.  However, our SQL statements now 
have to include the data elements of the FacultyStudent class. 
 
Restoring Data 
Unfortunately, we will not be able to reuse the Restore() method of 
the superclass, for the same reasons outlined above.  We therefore 
have to implement Restore() in the FacultyStudent class.  The 
modification involves obtaining data from the FacultyStudent table, in 
addition to the other student-related tables. 
 
TransferStudent 
Saving Data 
As with the FacultyStudent class, we will have to override the Save() 
method.  In this case, we need to obtain data from the 
TransferStudent table in the database.  As a result, we will need 
different SQL statements to accomplish this. 
 
Restoring Data 
Here also, we will not be able to reuse the Restore() method of the 
superclass, for the same reasons outlined above and for the 
FacultyStudent class.  We therefore have to implement Restore() in 
the TransferStudent class.   
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HomeCollege 
Saving Data 
In our database, the data corresponding to a HomeCollege object is 
held inside the TransferStudent table.  This data must be obtained by 
the Save() method of the TransferStudent class.  As a consequence, it 
does not need its own Save() method.  However, the accessor 
functions must be public. 
 
Restoring Data 
The HomeCollege class does not need its own Restore() method either.  
The logic here is the opposite of the logic for saving data.    
 
Name 
Objects of class Name would be not need their own Save() or 
Restore() methods, as their data is maintained in our database as part 
of the TypicalStudent table. 
 
Address 
Objects of class Address would be not need their own Save() or 
Restore() methods, as their data is maintained in our database as part 
of the TypicalStudent table. 
 
StudentMajors and Major 
Saving Data 
An object of this class represents all of the majors of an individual 
student, zero, one or two (per requirements).  An object of 
StudentMajors corresponds to the rows in the StudentMajor table for a 
given student ID.  Since an object of StudentMajors is an aggregate of 
objects of class Major, each object of class Major represents one row 
returned from the StudentMajor table for a given student ID.  SQL 
statements would be constructed to insert or update the data in the 
StudentMajor table. 
 
Restoring Data 
When restoring data from the database, we have to construct an 
object of StudentMajors will contain the rows returned from the 
StudentMajor table for a given student ID.  As above, we will construct 
objects of class Major for each row returned from the StudentMajor 
table for a given student ID. 
 
StudentSubjects and Subject 
Saving Data 
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An object of this class represents all of the subjects being taken by an 
individual student, zero, or more (per requirements).  An object of 
StudentSubjects corresponds to the rows in the StudentSubjects table 
for a given student ID.  Since an object of StudentSubjects is an 
aggregate of objects of class Subject, each object of class Subject 
represents one row returned from the StudentSubjects table for a 
given student ID.  SQL statements would be constructed to insert or 
update the data in the StudentSubjects table. 
 
Restoring Data 
When restoring data from the database, we have to construct an 
object of StudentSubjects will contain the rows returned from the 
StudentSubjects table for a given student ID.  As above, we will 
construct objects of class Subject for each row returned from the 
StudentSubjects table for a given student ID.  SQL statements have to 
be constructed to retrieve data from the StudentSubjects table. 
 
AllMajors 
Saving Data 
An object of this class represents all of the majors available to 
students.  An object of StudentMajors corresponds to the rows in the 
AllMajors table.  Since an object of StudentMajors is also an aggregate 
of objects of class Major, each object of class Major represents one 
row returned from the AllMajors.  SQL statements would be 
constructed to insert or update the data in the AllMajors table. 
 
Restoring Data 
When restoring data from the database, we have to construct an 
object of AllMajors will contain the rows returned from the AllMajors.  
As above, we will construct objects of class Major for each row 
returned from the AllMajors. 
 
AllSubjects 
Saving Data 
An object of this class represents all of the majors available to 
students.  An object of AllSubjects corresponds to the rows in the 
AllSubjects table.  Since an object of AllSubjects is also an aggregate 
of objects of class Subject, each object of class Subject represents one 
row returned from the AllSubjects table.  SQL statements would be 
constructed to insert or update the data in the AllSubjects table. 
 
Restoring Data 
When restoring data from the database, we have to construct an 
object of AllSubjects will contain the rows returned from the 
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AllSubjects.  As above, we will construct objects of class Major for each 
row returned from the AllSubjects table. 
 
AllStudents 
An object of this class represents all of the students.  An object of 
AllStudents corresponds to the rows in the TypicalStudents table, with 
additional knowledge of whether they are typical, transfer or faculty.  
An object of AllStudents is obviously an aggregate of objects of class 
TypicalStudent, FacultyStudent or TransferStudent.  So, to save data, 
we would invoke the Save() method as defined for each object.  
Likewise, to restore data, we would invoke the Restore() method as 
defined for each object. 

System Functionality and Report 
Requirements 
From the report requirements, we know that there are various 
business functions that we must provide.  These will be essentially 
insertion, deletion, update or query operations.  These are outlined 
below: 
 
Adding a new student’s information 
This entails inserting new student information into the database.  This 
is an insertion operation.  As stated in the requirements, we will not 
have to deal with storing incomplete student data.  The assumption is 
that we will always be entering a complete student record, with the 
exception of majors and subjects.  We should assume we will have 
complete name, address, etc. 
 
Searching and displaying a student’s information 
Retrieving a student’s information is based on executing a series of 
queries based on the student’s ID (simplest option).  However, we 
should also support queries by student last name, which may return 
multiple records.  In any case, we will be executing a series of queries 
as we need to create the appropriate objects in our object model from 
the data in the database, which does not map exactly.  For example, 
how will we determine whether a student is typical, faculty or transfer?  
We first have to obtain a student ID that is either entered by the user 
or derived from the student’s last name.  We have to query the 
FacultyStudent query with an ID.  If there are records with this key, 
the ID belongs to a student that is also a member of faculty.  If not, 
we still have to execute a query to determine if there is a record 
corresponding to this ID in the TransferStudent table.  Of course, we 
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are assuming that a transfer student can never be a faculty student 
and vice-versa.  This is implicit in the requirements. 
 
Deleting a student 
This function involves deleting all records related to a particular ID 
from all tables in the database.  
 
Changing/assigning classes and credits to students 
This is effectively an update operation that requires us to update class 
and credit data based on an individual ID. 
 
Changing/assigning a student’s major 
This is effectively an update operation that requires us to update class 
and credit data based on an individual ID. 
 
Changing/assigning a student’s type 
This operation is a bit more complicated, as it involves multiple 
database operations, depending on the predecessor and successor 
types.  If a student changes from faculty to typical, that involves a 
deletion of data from FacultyStudent.  If the direction was reversed, 
we would insert into FacultyStudent.  Similar operations would occur if 
a transfer student became a typical student, say at the beginning of 
the following school year.  We would have to remove the transfer 
college information from TransferStudent.  To go from a transfer 
student to a faculty student, or vice-versa, we have to do two 
operations, a delete from one and an insert into the other.  These two 
operations need to execute successfully, as the database would be in 
an inconsistent state otherwise.  These operations would need to be 
included in a transaction52. 
 
Changing/assigning a student’s status, i.e. from full-time to part-time  
or vice-versa 
This is effectively an update operation that requires us to update class 
and credit data based on an individual ID. 
 
The same analysis can be done for the reports that the system must 
provide.  The list of reports is below.  
 
Sorted list of full-time students (all information) 
This is implemented as a query that returns all of the students with 
more than ten credits 

                                                 
52 A transaction represents a group of operations that execute atomically, i.e. as one.  This means if one 
operation in the transaction fails, the transaction as a whole, fails.  
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Sorted list of part-time students (all information) 
This is implemented as a query that returns all of the students with 
less than ten credits 
 
Number of students of each type (typical, faculty and transfer) 
This is implemented as a series of queries as we have to determine 
how many records are in the TypicalStudent table that are not in 
either of the other two tables, in addition to determining how many 
records are in each of the FacultyStudent and TransferStudent tables. 
 
For each type of student, a sorted list of student names and addresses 
This is similar to the solution above, except we need to produce a 
sorted list, not a count. 
 
For each type of student, a reversed list of student names and 
addresses 
As above, but sorted in reverse order. 
 
List of all students, their majors and number of credits 
This is similar to the very first report and would be implemented in a 
like fashion. 
 
A sorted list of all students based on their cost for the semester 
This operation will require a series of queries as well, in order to 
calculate the appropriate cost for the semester. 

Implementing Data Management Methods 
From our discussion earlier, we know we have two choices.  One is to 
define a class that represents the entire database, with operations 
defined that match the business functionality requirements, or to 
include similar operations in other classes.  How should we create an 
abstraction for our data management?  Another way of looking at this 
is to say, what level of abstraction should we select for our data 
management operations?  So far, we know we will have Save() and 
Restore() methods defined for many classes.  In addition, we will have 
methods that correspond to the data required for our reports.  We also 
have classes AllStudents and System.   
 
Creating an abstraction representing the database gives us some 
advantages.  For example, we can centralize the mechanism to 
connect to the database, i.e. supplying the database name, user id, 
password, etc.  In addition, we could also centralize handling cursors, 
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executing dynamic SQL statements and interacting with stored 
procedures.  The interface for such a class would reflect this.  To avoid 
confusion, let’s name this class DBClass53.  Since we are working with 
one database, there would be one instance of this class in our system.  
We will need to define one or more constructors and a destructor for 
DBClass.  
 
Now we need to determine which classes need to interact directly with 
DBClass.  Some object has to create an instance of DBClass.  This will 
be an object of class System.  We also need to interact with the 
database to manipulate student data.  The logical place to have this 
interaction is in class AllStudents, as this represents all of the students 
in the system.  

Class Details Revisited 
In order to get our system to “hang together” correctly, we have to 
modify the definitions of constructors and other methods, add new 
attributes, etc.  Let’s review the list of classes to be modified. 

System 
The major modification is that we have to add a new attribute: an 
instance of DBClass.  This will represent the database we will be using 
throughout. Based on our simple example, it is logical that we would 
attempt to instantiate this attribute during the construction of the 
system object itself.  In addition to other functionality, the destructor 
for System would have to “clean up” the object of class DBClass. 

DBClass 
This is a new class we “discovered”.  Since it represents a database, it 
is appropriate for its constructor to take the parameters necessary to 
make the connection.  Let’s assume we need a database name, user id 
and password, all character strings.  The constructor is then as 
follows: 

 
DBClass(database_name, user_id, password) 
 

We could also define a destructor for DBClass that would terminate the 
connection to the database. 
 
In addition to the methods above, we could also define read-only 
accessor methods in the class to return the name of the current 

                                                 
53 Creating the new class DBClass is an example of identifying classes by discovery, as mentioned in 
Chapter 2. 
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database name and the name of the current user (Get() methods only, 
no Set()). 

AllStudents 
Since this class will be interacting directly with the database, we need 
to have a way to refer to the object that represents our current 
database.  As in everything, we have choices here as well.  We could 
make an accessor function that returns the database object a public 
method of the System class, in which case we need to be able to refer 
to the system object in order to use the database.  The other choice is 
to make a public accessor function as well, but also supply a reference 
(or a pointer) to the database object to the object of class AllStudents 
for its use.  This solution is more elegant, as the only thing we need to 
use is the database object, not the entire system object.  We should 
not need to pass references to the system object around. In order to 
implement our choice, the constructor of AllStudents() would need to 
be modified to accept the reference to the database object.  In 
addition, we would need to add an attribute in AllStudents to store 
that reference.  The other methods currently defined in AllStudents 
remain the same. 
 
AllStudents is a class that is an aggregate of TypicalStudent, 
TransferStudent and FacultyStudent objects.  We will add methods 
GetFirst() and GetNext(), Count(), Append() and Delete() to the 
interface of all aggregate classes.  This will make the interaction with 
them easier.  GetFirst() and GetNext() would allow callers to navigate 
through the object that are in the aggregate.  This facilitates any 
browsing of the objects in the class.  Count() would return the number 
of objects currently in the aggregate.  Append() would add objects to 
the collection (aggregate) and Delete() would remove objects from the 
collection. 

Address 
As with AllStudents, we will add GetFirst() and GetNext(),Count(), 
Append() and Delete() methods.  This is because a student  could 
have more than one address. 

Student Majors 
As with AllStudents, we will add GetFirst() and GetNext(),Count(), 
Append() and Delete() methods. 
 

Student Subjects 
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As with AllStudents, we will add GetFirst() and GetNext(),Count(), 
Append() and Delete() methods. 

All Majors 
As with AllStudents, we will add GetFirst() and GetNext(),Count(), 
Append() and Delete() methods. 

All Subjects 
As with AllStudents, we will add GetFirst() and GetNext(),Count(), 
Append() and Delete() methods. 
 
Our updated class models are below. 
 

+System()
+GetMajors()
+SetMajors()
+GetSubjects()
+SetSubjects()
+GetStudents()
+SetStudents()
+GetSortedFullTimeStudents()
+GetNumberOfStudentsOfEachType()
+GetSortedNamesAndAddresses()
+GetReversedNamesAndAddresses()
+GetStudentsMajorsAndCredits()
+GetStudentsCostForSemester()
+GetCurrentDB() : DBClass

-majors : AllMajors
-subjects : AllSubjects
-students : AllStudents
-current_Database : DBClass

System

+AllStudents()
+GetFirst() : TypicalStudent
+GetNext() : TypicalStudent
+Count() : Long
+SearchStudents() : TypicalStudent
+DeleteStudent()
+ChangeStudentClassesAndCredits()
+ChangeStudentMajor()
+ChangeStudentType()
+ChangeStudentStatus()

-number_Of_Students : long

AllStudents

+FacultyStudent()
+FacultyStudent()
+FacultyStudent()
+GetSubjectTaught() : Subject
+SetSubjectTaught()
+GetDateEmployed() : Date
+SetDateEmployed()

-subject_Taught : Subject
-department : String
-date_Employed : Date

FacultyStudent

+TypicalStudent()
+TypicalStudent()
+TypicalStudent()
+GetStudentName() : String
+SetStudentName()
+GetStudentAddress() : String
+SetStudentAddress()
+GetStudentID() : long
+SetStudentID()
+GetStudentMajors() : StudentMajors
+SetStudentMajors()
+GetStudentSubjects()
+SetStudentSubjects()
+GetStudentGrade()
+SetStudentGrade()
+GetStudentDiscount()

-ID : long
-student_Name : Name
-student_Address : Address
-student_Majors : StudentMajors
-student_Subjects : StudentSubjects
-student_Grade : char
-student_Discount : float

TypicalStudent

+TransferStudent()
+TransferStudent()
+TransferStudent()
+GetHomeCollege() : HomeCollege
+SetHomeCollege()

-home_College : HomeCollege

TransferStudent

+Subject()
+GetSubjectName() : String
+SetSubjectName()
+GetCredits() : int
+SetCredits()

-subject_ID : long
-subject_Name : String
-credits : int

Subject

+GetMajor() : String
+SetMajor()

-name : String
-major_ID : long

Major

1

*
1

1

1

*

1
*

1

*

1

*

+DBClass()
+GetDBName() : String
+GetUserID()

-DBName : String
-UserID : String

DBClass

1

*

+HomeCollege()
+GetCollegeName() : String
+SetCollegeName()
+GetCollegeAddress() : String
+SetCollegeAddress()

-college_Name : String
-college_Address : Address

HomeCollege

+Name()
+Name()
+GetFirstName() : String
+SetFirstName()
+GetMiddleInitial() : String
+SetMiddleInitial()
+GetLastName() : String
+SetLastName()
+GetTitle() : String
+SetTitle()

-first_Name : String
-middle_Initial : char
-last_Name : String
-title : String

Name +Address()
+GetStreet() : String
+SetStreet()
+GetCity() : String
+SetCity()
+GetState() : String
+SetState()
+GetPostalCode() : String
+SetPostalCode()

-street_Address : String
-city : String
-state : String
-postal_code : String

Address

+StudentMajors()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-majors
-count : int

StudentMajors

+StudentSubjects()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-subjects
-count : int

StudentSubjects

+StudentMajors()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-majors
-count : int

AllMajors

+StudentSubjects()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-subjects
-count : int

AllSubjects

 

Fig 6.5 Student-related focus 

In this diagram, we are focusing on the “student” classes, highlighting 
the relationships therein. 
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+System()
+GetMajors()
+SetMajors()
+GetSubjects()
+SetSubjects()
+GetStudents()
+SetStudents()
+GetSortedFullTimeStudents()
+GetNumberOfStudentsOfEachType()
+GetSortedNamesAndAddresses()
+GetReversedNamesAndAddresses()
+GetStudentsMajorsAndCredits()
+GetStudentsCostForSemester()
+GetCurrentDB() : DBClass

-majors : AllMajors
-subjects : AllSubjects
-students : AllStudents
-current_Database : DBClass

System

+Subject()
+GetSubjectName() : String
+SetSubjectName()
+GetCredits() : int
+SetCredits()

-subject_ID : long
-subject_Name : String
-credits : int

Subject

+GetMajor() : String
+SetMajor()

-name : String
-major_ID : long

Major

+DBClass()
+GetDBName() : String
+GetUserID()

-DBName : String
-UserID : String

DBClass

+StudentMajors()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-majors
-count : int

AllMajors

+StudentSubjects()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-subjects
-count : int

AllSubjects

FacultyStudent

TypicalStudent

TransferStudent

HomeCollege

Name

Address

StudentMajors

StudentSubjects

+AllStudents()
+GetFirst() : TypicalStudent
+GetNext() : TypicalStudent
+Count() : Long
+SearchStudents() : TypicalStudent
+DeleteStudent()
+ChangeStudentClassesAndCredits()
+ChangeStudentMajor()
+ChangeStudentType()
+ChangeStudentStatus()

-number_Of_Students : long

AllStudents

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
*

1

*

1

*

1

1

1

*

1

*  
 

Fig 6.6 System-related focus 
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User Interface 
Creating usable human-computer interfaces is a topic that could fill a 
volume by itself.  That is not our intent here.  As such, we will not 
attempt to review all the elements of a “good” user interface.  Instead, 
we will discuss how we design the presentation, given the 
requirements.  In our example, it is obvious that we will have to 
provide a user interface.  It is just as obvious that  
 
In order to accomplish this, we must quickly review the form of the 
various data elements we have to work with.  For example, we need to 
present a student’s ID, name, grade, discount, etc.  These are single 
values, meaning there is only one for each student.  Some of the data 
we have may multiple values per student.  For instance, a student may 
have multiple majors, subjects and addresses.  In addition, we also 
keep track of all available majors and subjects.  We will use a different 
metaphor to present this data. 
 
The objective of a user interface is to provide a usable interface for an 
application.  Consequently, a user interface should be designed from 
the perspective of the user and to benefit the user, while factoring in 
technical constraints that exist and which will be accommodated in the 
design.  A user-interface should not reflect the underlying data or 
object-structure, unless indeed that is easiest for the users to use.  
The key word in “user interface” is “user”. 
 
Each user interface screen is comprised of various GUI elements54.  
The choice of elements, layout, usage, usability, “look and feel” are 
what separates good user interface designs from great user interface 
designs.  How do we know when we have a good design?  That is not 
an easy question, as it is somewhat subjective.  However, we do have 
tools at our disposal to help make sure our user interface satisfies all 
requirements55.  One of those tools is Prototyping. 

Prototyping 
A picture is worth a thousand words.  A direct effect of this is the 
importance of Prototyping.  Prototyping is very useful for presenting 
enough details of a system to increase understanding and generate 
feedback.  Prototyping is an activity that starts in the Analysis phase, 
once there is some understanding of the requirements. 
 
                                                 
54 Graphical User Interface.  See Appendix 3 for a discussion. 
55 There may be additional requirements that are supplied that govern the user interface.  These would be 
categorized as non-functional requirements also. 
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At the simplest, a prototype may consist of paper-based designs.  A 
simple prototype could be created using simple shapes (rectangles, 
squares, etc.) to represent GUI elements such as windows, menus and 
buttons.  This serves to give the user a “feel” of the application’s 
interface.  In other cases, more complicated prototypes may be 
developed.  Obviously, the purpose of the prototype is to facilitate the 
understanding of the requirements and to set expectations.   
 
As in other aspects of object-oriented development, Prototyping is 
iterative also.  It may take several iterations before the developers, 
analysts and users are in agreement.  While this may seem tedious, 
this actually underscores the importance of prototyping, as potentially 
troublesome issues can be addressed easily (and cheaply) in the 
prototype.  Some of these problems could become major issues if they 
had to be rectified later in the system development cycle.  In general, 
the earlier problems are identified and solved, the better of everyone 
is. 

System Prototype 
For our example, we will review a very basic prototype of the system.  
The prototype covers some areas of the system.   It is not complete.  
It represents what would be the beginning of our iterative process.  
We would expect the prototype to be modified, possibly significantly, 
before it was considered ready and approved. 
 
This figure outlines a proposed menu structure and the main screen of 
the application.   The menu choices represent activities culled from the 
requirements.  Let us review the menu options. 
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Fig 6.7 Main menu 
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Our main menu items would also have sub-menus.  Under the File 
menu, we could have menu options to add and delete students and 
exit the system.   
 

 
 

Fig 6.8 File sub-menu 

 
These may not be the only options that we include under the File 
menu.  As we develop the prototype, we may find that it is appropriate 
to add more options to this menu. 
Adding a Student 
If we select “Add Student” from the File menu, a window is launched 
that displays the form to be used to enter student information.  In our 
prototype, this is the only screen used to capture student information.  
As such, it has all the fields needed for each type of student, all in one 
place. 
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Fig 6.9 Adding a new student 



 191  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

When we add a student, we need to know what type of student we are 
adding.  We use a combo box to allow the users to select the type.  
The user would select the type corresponding to the type of the 
student that is being added. This would cause certain fields to be 
available and others to be unavailable, as warranted by the type of 
student.  Examples follow. 
 

 
 

Fig 6.10 Adding a Typical student 
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Fig 6.11 Adding a Faculty student 
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Fig 6.10 Adding a Transfer student 
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Searching for Students 
Our requirements dictate that the system must allow searches of 
students.  The user interface for searching is described below.  It has 
multiple steps, broken down into obtaining search criteria, presenting 
search results and displaying the detail for the selected student.  If the 
search criteria is a student’s last name, we may have multiple results 
as there may be many students with the same last name.  Thus, we 
need to display multiple rows of information in our search results and 
allow the user to select the appropriate one.   
 
To allow us to search, we have a menu option, “Find Student” that is a 
sub-menu option of the “Search” menu. 
 

 
 

Fig 6.11 Find Student menu item 
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Fig 6.12 Search criteria 

 
On this form, we see the two search options that we incorporated 
earlier.  We are able to select whether we want to search by a 
student’s last name or by their ID by selecting the appropriate radio 
button. 
 
Once we click on the “Search” button, we would execute the search 
based on the criteria and launch another window (“Search Results”) to 
display the search results.   
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Fig 6.13 Search Results 

 
As we said, we may obtain multiple results from the executing our 
search.  We will use a tabular grid, to display one or more rows with 
multiple columns. 
 
The user would select the correct student from the display.  Once that 
selection was made, the third form in the sequence would be 
displayed.  This is the same form as was used for adding a new 
student, with some contextual changes.  For example, we no longer 
need a combo box for the student type.  The combo box will be 
replaced with a text box, as this form is now being used to display 
existing data, not create new data.  Indeed, we will have to make the 
text box un-editable. 
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Fig 6.14 View student details 

 
This example shows how the screen would look if we retrieved 
information for a typical student. 
 
From before, we know a student might have multiple addresses, 
majors and subjects.  Each of these corresponds to an object that is an 
aggregate. The methods GetFirst(), GetNext() and Count(), as defined 
on each of the “aggregation” objects, will be very useful in populating 
these tabular grids.  As before, each column in the grid would 
correspond to an attribute from the object. 
 
We also have to give the users the ability to modify a student’s data.  
In order to accomplish this, there is an “Edit” button on the screen.  
The idea is that the users would click on this button to modify data.  
This would allow the elements on the screen to be editable, not “read-
only” as in “view” mode. 
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Once we return to “edit” mode, the screen elements would revert to 
those apparent when we chose “Add Student” from the “File” menu, 
i.e. the combo box would return, etc. 
Reports 
All of the reporting options of the system could be grouped under the 
“Reports” option on the main menu.  We could place all report options 
on a single separate form as follows. 
 

 
 
Fig 6.15 Report options 
Maintaining System Data 
As we saw with our data model, there are other data elements that we 
need to allow our users to maintain.  They need to maintain subject 
and major data.  We’ve grouped these elements under the Tools 
menu, as you can see from the picture below. 
 
Each of these options would probably need to have its own form which 
would give the users the ability to add new majors, delete majors, add 
new subjects and delete subjects. 
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As we go along, we may also discover additional tools and utilities that 
need to be included.  For example, maintaining the discount rate that 
is offered by the institution, for which we do not yet have an interface. 
 

 
 

Fig 6.16 Tools menu 
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System Help 
As a matter of course applications should provide help for users.  
Typically, there is a main menu item called “Help”.  Among the items 
in the “Help” menu, we may also find the “About” item which gives 
information about the system such as version, serial number, 
operating system information, etc. 
 

 
 

Fig 6.16 Help menu 
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Summary 
We’ve taken an object-oriented approach to designing this system.  
This is definitely not the only possible design we could have 
discovered.  However, it is important, whatever the design ultimately 
is, that you are able to justify the decisions and tradeoffs that you 
make.  Each decision will have ramifications, some minor, some major. 
 
While we have gone through a few iterations, we are not finished.  
This is a design in the “middle” stages and we definitely have more to 
do.  For example, we need to do more work with our methods.  We are 
assuming the methods are public and the attributes are private or 
protected.  However, this is not necessarily true.  Also, we have 
objects that do list management.  However, because these objects are 
manipulated from “within” another object, i.e. are part of a 
composition relationship, we may decide that we need accessor 
methods in the “outer” objects that call methods of the “inner” object.  
Why?  If we declare the “inner” object, i.e. AllStudents, 
StudentSubjects, etc., as private in the “outer” class, then this object 
would not be accessible from the outside of the “outer” object.  This 
means if AllStudents is a private member of System, then no object 
outside of System could cause a student to be added.  This may or 
may not be okay, depending on the language to be used for 
implementation.  So, we may need to create or utilize an accessor 
function to allow objects from the “outside” of this class to invoke 
methods which in turn invoke methods of the “inner” class.  Of course, 
the methods of the “inner” class would have to be public, or none of 
this works! 
 
We took a first try at a user interface.  However, there are many other 
details to work out.  Firstly, our prototype is incomplete.  We only 
prototyped adding and viewing student data.  We still need to 
prototype editing data, maintaining system data, deleting students, 
reports, etc.  If we look further, there are some details of our 
abstractions that have yet to be finalized.  As part of the iterative 
nature of object-oriented development, we would expect to review our 
classes, their attributes and operations until we were comfortable with 
the outcome. 
 
In addition, we would most likely look to implement our aggregate 
classes, i.e. AllStudents, StudentMajors, etc. with pre-defined 
collection classes or creating instances of parameterized classes.  This 
is because, though the classes may hold different objects, their 
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behavior is the same.  We would have to ensure that such classes 
provided the necessary methods such as GetFirst(), Count(), etc. 

Evaluation 
Let us evaluate our design using the metrics we discussed earlier in 
the chapter.  These metrics allow us to test the quality of the classes 
we’ve chosen, the overall semantics, operations, etc. 

Coupling 
Coupling is the measure of the strength of association established by a 
connection from one class or object to another.  Strong coupling 
complicates a system, since a module will be harder to understand or 
modify by itself, thus adding to the overall complexity of the system. 
 
Our design has some elements that are tightly coupled and some 
which are loosely coupled.  The inheritance relationship represents 
relatively tight coupling in terms of any significant changes to the base 
class structure.  We benefit from this tight coupling, as we can 
leverage attributes and methods of the base class in the subclasses.  
Here is an example of a trade-off, stemming from one of our decisions.  
In fact, this appears to be the tightest coupling in our design. 
 
We also have elements that are loosely coupled.  The associative 
relationships involving the TypicalStudent and System classes, and 
those involving the “list management” classes are more loosely 
coupled.  We can make changes to the classes on either side of the 
association, and not have any (or minimal) effect on other classes. 

Cohesion  
Cohesion is the measure of the degree of connectivity among the 
elements of a single class or object.  Entirely unrelated abstractions 
should not be placed together in one class.  Unrelated behaviours 
should not be captured in the same class. 
 
In our design, we’ve separated our abstractions greatly, creating new 
abstractions for functions such as managing lists, etc.  In reviewing 
our classes’ responsibilities, we have limited our attributes and 
methods to only those that are applicable to a particular abstraction.  
The greater the extent to which this is done, the more abstractions, 
i.e. classes, your system will have.  This is another explicit decision to 
be made, which yields a trade-off. 
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Sufficiency  
Sufficiency is the measure of whether or not a class or module 
captures enough of the characteristics of the abstraction to allow 
meaningful and efficient interactions. 
 
We have to look at sufficiency in the context of the requirements.  
We’ve had to supply information where it was lacking in the 
requirements (in practice, when this occurs, we would have consulted 
the business experts).  In this context, how do our classes measure 
up?  We are somewhat sufficient thus far, but as we mentioned earlier, 
we are not finished, i.e. we need to review methods, etc.  So we would 
potentially expect an incrementally greater degree of sufficiency at the 
true end of the exercise. 

Completeness 
Completeness is the measure of whether or not the interface of a class 
captures all of the meaningful characteristics of the abstraction.   
 
Completeness and Sufficiency would seem to be at odds.  However, we 
have to find a balance.   In the context of the requirements, we seem 
to be quite complete.  However, as we refine further, we would expect 
an incrementally greater degree of completeness as well.  

Primitiveness 
Primitiveness is the measure of the ability of operations to be 
efficiently implemented, only if given access to the underlying 
representation of the abstraction. 
 
Based on the methods defined thus far, we may infer that they are 
somewhat primitive.  However, we have not defined how our methods 
are implemented, i.e. what their steps will be.  We need to examine 
our methods for redundancy, within each class.  This would be a by-
product of the refinement we have alluded to earlier. 
 
This exercise has demonstrated the incremental and iterative nature of 
creating an object-oriented design.  As we refine our design, we may 
yet discover that we have to change our design to refine behaviours, 
and to be better aligned with the spirit of the metrics that we use to 
evaluate our abstractions. 
 
We have only depicted class relationships.  One aspect of our design is 
how we expect objects of our classes to interact at run-time.  We need 
to consider this as the functionality of our system is based on the 
collaboration and interactions between the objects of the classes in our 
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design.  We can depict these collaborations and interactions between 
objects by means of diagrams such as object diagrams, interaction 
diagrams, sequence diagrams, state diagrams, etc.  We will explain all 
of these and their relationship to the overall design and performance 
of systems later on. 
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Chapter Summary 
• Design is primarily a refinement of the analysis model. 

 
• Reusability, reliability and extensibility are among the object-

oriented design goals. 
 

• Refine class selections by examining coupling, cohesion, 
sufficiency, completeness, quality of interface and primitiveness. 

 
• Design Patterns are generalized steps used to solve commonly 

occurring problems. 
 

• There are various language features that may be available for 
use such as paramterized classes, string classes and collections. 
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Exercises 

1. Describe how you would implement a method Count() that 
returns the number of students in the system.   
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Chapter 7 
 
System Development Processes 
How do we formalize the activities depicted in Chapter 6 into a 
process? 
 
What we want, indeed need to do, is to create a process for solving 
problems.  This process needs to be well defined, repeatable, well 
defined and well managed and well optimized.  It is very important 
that we distill how we develop object-oriented software into a process 
that we can reuse repeatedly.  A repeatable process thus becomes a 
“pattern” for us to apply when faced with solving new problems.  As 
we’ve seen with design patterns in Chapter 6, this does not mean we 
can’t modify the process to fit our problem.  As we’ve seen, these 
items are in the context of an iterative and incremental life cycle.  We 
need to take everything we’ve learned about how we go about 
developing object-oriented software and “package” it into a Software 
Development Process. 

What is a Software Development 
Process? 
A software development process describes a series of activities, their 
pre-requisites and their resulting artifacts (products) that describe how 
to develop (hopefully) quality software.  An overall process with these 
attributes is composed of multiple levels of detail.   

The Software Development Process 
Object-oriented design should be viewed as is an inherently interactive 
and incremental process.  It is iterative in the sense that it involves 
the successive refinement of an object-oriented architecture.   It is 
incremental in the sense that each pass through the analysis and 
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design steps leads us to gradually refine our strategic and tactical 
decisions, which ultimately yields an appropriate solution, based on 
the requirements. 
 
In order to describe our process, let us examine the activities that we 
have done so far, using the example as our guide.  We’ve gone 
through a number of steps so far.  We were given requirements.  That 
implies that at some point, the requirements for our example system 
were collected.  At this point, we are not done.  We haven’t finalized 
our design and we have not had any discussions about what comes 
after.  Here are the steps that have occurred so far.   
 

• Conceptualization and requirements gathering 
• Analysis 
• Design 

 
Let’s examine each of these, in an attempt to formalize the activities 
corresponding to each. 

Conceptualization and Requirements 
Gathering 
While requirements are the cornerstone of our development efforts, 
the first step in our process is to get the concept of the system.  This 
is effectively brainstorming about what the system should do, i.e. what 
functionality it should provide, etc.  In many cases, this includes 
“selling” the idea to management, etc. to get funding to continue.  The 
concept must be deemed “sound” before anything else is done.  Thus, 
the notion of conceptualization includes having the idea for the system 
and doing those activities that will prove the concept sound, such as 
providing sufficient “expected” detail to do a cost-benefit analysis, for 
example.  
 
Once we have passed the concept stage, we must gather details about 
the expected functionality of the system.  These are the requirements.  
As stated before, good requirements are critical, as they provide the 
boundaries and the guidelines within which our software solutions 
must operate.  This is true for both functional and non-functional 
requirements.  From Chapter 2, we know that there are various types 
of requirements.  This does not tell us how to actually go about 
capturing the requirements.  A full discussion of how we gather 
requirements is out of the scope of this book.  However, we need to 
account for this step as part of our overall process. 
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Analysis 
Let’s review what we did during our Analysis step.  We reviewed our 
system requirements.  We applied various techniques (nouns and 
verbs, behavior analysis, etc.) to select various candidate abstractions 
and applied our evaluation criteria to determine which abstractions 
would be our key abstractions.  We refined these abstractions as 
necessary, factoring and re-factoring.  We identified any relationships 
between abstractions, seeking to leverage inheritance, aggregation 
and association.  Let’s look at these steps in more detail.   
 
Fundamentally, we are interested in the activities of choosing quality 
abstractions, etc.  In practical terms, these would be activities 
performed by developers and/or analysts, either individually or in 
teams. These activities include the following: 
 

1. Identify classes and objects at a given level of abstraction.   
2. Identify semantics of these classes and objects. 
3. Identify the relationships between classes and objects 

 
Let us examine each of these activities. 

Identify Classes and Objects at a Given Level of 
Abstraction 

Purpose 
As we’ve seen, we use this to establish the boundaries of the problem.  
This is the first step in devising an object-oriented decomposition of 
the system.  In this step, we identify which real-world objects we will 
model in our system.  Via abstraction, we represent these objects and 
we can focus only on the characteristics of the real-world object that 
ate relevant to the system.  These abstractions will probably be named 
for the objects they represent, thus utilizing names and nomenclature 
from the problem domain.  As a result of doing this, we are deciding 
what is and isn’t of interest to our system, giving us, in effect, a 
boundary.  We may not know all of our abstractions at the end of 
Analysis.  In fact, as part of design, we may discover new abstractions 
.  
It is also important to make sure that our classes are at the same level 
of abstraction.  This means, it is important to be consistent across 
classes when deciding which details (of the real-world objects being 
modeled) are relevant to the system and which are not.  Without this 
consistency, we may be unable to leverage class relationships.  If we 
have abstractions at different levels of detail, we will have a difficult 
time understanding the class and ultimately object interactions.   
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Products 
How do we track and store the abstractions and details as we go 
along?  As you’ve seen, it gets unwieldy very quickly.  Indeed, as 
problems go, our example was a relatively simple problem to solve.  
Ideally, we need some way of managing these abstractions that would 
make it easier to deal with them.  As you may imagine, the need for 
something like this increases exponentially as the number of team 
members, i.e. individual developers and analysts increases.  A central 
repository, i.e. a data dictionary consisting of all classes and objects 
using meaningful names is necessary for large-scale efforts.  This 
repository would need to be continuously updated as development 
proceeds and would form part of the project’s overall documentation. 
 
This step is complete when we have a reasonable set of candidate 
abstractions.  If the set is large, it may be appropriate to employ a 
repository even at this stage, i.e. a data dictionary. 
 

Activities 
The activities at this stage of development include discovery of 
abstractions, either from the requirements directly or not. 

Identify Semantics of These Classes and 
Objects 

Purpose 
In this step, we establish the behavior, attributes and rules of each 
abstraction identified in the previous phase.  We need to refine our 
candidate abstractions.  At this point, we have candidate classes, 
many of which will not ultimately be included in our system.  The 
process of establishing the semantics of each of our candidate classes 
will help us weed out those classes that have no place in our model.  
This means we have to keep looking at what the responsibilities of 
each class are.  We have to intelligently distribute the responsibilities, 
based on what each class’ semantics are.   
 
These responsibilities will directly translate into the operations that we 
define for each class.   We need to specify concrete operations (i.e. 
protocols) for each abstraction. The result is a precise signature for 
each operation.  The signature of a method is the combination of the 
name of the method and its parameters.  We also need to define the 
set of attributes to complement our methods, for each abstraction.   
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It is worth noting that our methods may or may not change as we 
continue to refine our abstractions (part of our incremental, iterative 
process).   The effective distribution of responsibilities is based on 
repeatedly evaluating our abstraction using the metrics. 
 

Products 
• Develop each abstraction’s protocol: 

o Create specifications for each abstraction 
o Write the interface for each class 

 

Activities 
Some of the main activities are below. 
Scenario Walk-Through 
The idea of storyboarding is to do a walk-through of scenarios 
involving the abstraction(s), like they do when developing television 
shows and movies. 
 
We may summarize the ideas as follows: 

• Select one or a set of scenarios related to an area of 
functionality 

• Walk through the activity of the scenario assigning reponsibilities 
to each abstraction that is participating.  Assign responsibilities 
that are enough to accomplish the desired behavior, based on 
the semantics of the class. 

• As the storyboard continues, reassign responsibilities as 
required, so that there is a reasonably balanced distribution of 
behavior (as mentioned above). 

Focus on one class at a time 
Sometimes, focusing on one abstraction at a time can give us great 
insight into our overall model.  Here is a summary of how we proceed: 

• Select an abstraction 
• Identify and list its roles and responsibilities 
• Devise a sufficient set of operations that satisfy these 

responsibilities 
• Review each operation individually.  Ensure it is a primitive 

operation.  If not, try to expose its more primitive operations 
and redefine into more than one operation. 

• Consider specific scenarios for construction (constructor), 
copying (copy constructor) and destruction (destructor) (later in 
cycle)  
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• Review operations and add any other primitive operations as 
required. 

Pattern Scavenging 
The notion of pattern scavenging is akin to our earlier discussion of the 
importance of design patterns.  Here is how we could apply this 
technique 

• Recognizes patterns of behavior, which represent opportunities 
for reuse. 

• Given the complete set of scenarios at this level of abstraction, 
look for patterns of interaction among abstractions.    This might 
point to similarities that may be exploited in the form of 
inheritance or aggregation, etc. 

• Given a set of responsibilities also at this level of abstraction, 
look for patterns of behavior.  Common roles and responsibilities 
should be unified in the form of common base, abstract classes, 
etc. 

• Look for patterns within operation signatures.  Identifying 
operations in different classes with the same functionality may 
give opportunities for leveraging similarities between the classes. 

 
At the end of this activity, we should have a reasonably complete, 
sufficient, primitive set of responsibilities (methods) for each 
abstraction. 

Identify the Relationships Among the Classes 
and Objects 

Purpose 
In order to identify the relationships between classes and objects, we 
need to do the following: 

• Review and strengthen the boundaries of each abstraction 
(based on semantics). 

• Identify the collaborators with each abstraction (class) identified 
earlier in the detailed process. 

• Formalize the physical and conceptual separations of concern 
among abstractions begun in previous step. 

• Identify important inheritance/aggregation relationships and 
associations between classes. 

 
This activity will refine the semantics and relationships of the 
abstractions and will serve as a blueprint for implementation. 
 

Products 
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• Class diagrams 
• Object diagrams 
• Module diagrams 
• Refinement of data dictionary 

 

Activities 
Identification and Specification of Hierarchical Relationships 

• For a given set of classes, at the same level of abstraction, 
populate a class diagram with each abstraction's important 
operations and attributes 

• Try to identify semantic dependencies between any two classes, 
i.e. if for class A to behave correctly, it must be associated with 
class B.  If this semantic dependency exists, establish an 
association relationship.  Establish cardinality and attributes (i.e. 
mandatory, optional) of the associative relationship.  For each 
association, specify role of each participant. 

• Validate decisions by walking through scenarios 
Identification of Collaborations 

• Identify the classes that have objects that will collaborate. 
• Produce object diagrams to model these mechanisms and 

interactions. 
• If common (i.e. similar) classes are found, leverage this 

similarity by implementing inheritance hierarchies. 
• On a larger scale, group and organize classes into modules and 

subsystems 
Identify Patterns that may Exist Among Classes and Objects 

• Look for opportunities of inheritance relationships 
• If there are patterns of structure, consider creating new classes 

that capture this, or refining existing abstractions.  Consider 
classes of similar behavior as candidates for parameterized 
classes 
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Identify
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these classes and

objects

Identify the
relationships between

classes and objects

Iterate

 
Fig 7.1 Analysis 
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Design 
 
It is in the Design phase that we take the models from the Analysis 
phase, (i.e. class diagrams, etc.) and take them one step close to 
implementation.  We have to factor in environment, constraints, non-
functional requirements, cost, time-to-market, etc.  We will produce a 
set of Design models that will be the basis for implementing the 
system.   
 
Design is the next step in our journey toward implementation.  As 
mentioned in Chapter 2, in the Design phase, we are specifying how 
the elements of the system that provide the functionality and satisfy 
constraints (non-functional requirements) will be implemented.  In 
Design, we are creating the overall architecture of our application. 
 
In order to accomplish these goals, we will need to refine and add 
more detail to our analysis models.  This will entail repeating some of 
the activities that were performed in the earlier phase, but with a 
different focus. 
 
Mechanisms represent patterns of behavior, i.e. interactions between 
collections of objects.  These are typically design decisions. 
 
During design, a developer must determine how instances of classes 
work together.  Remember, an OO system is a collection or 
cooperating objects. 
 
A Framework is a collection of classes that provides a set of services 
for a particular domain.  A framework exports a number of individual 
classes and mechanisms that clients can use or adapt (e.g. Microsoft 
Foundation Classes (MFC)). 
 
Our design process will include the following steps: 

 
1. Refine classes and relationships 
2. Identify environmental opportunities and constraints 
3. Identify maximal levels for software engineering goals 
4. Identify and employ useful patterns 
5. Finalize the interface and implementation of the classes and 

objects 
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Refine Classes and Relationships 
In Design, we start with the high-level models produced in the 
Analysis phase.  As we attempt to create the application’s architecture, 
we may find that there are some abstractions that need to be modified 
to properly fit the architecture56.  The abstractions developed in the 
Analysis phase may need to have operations added, possibly to 
interact with the operational environment, etc.  In some cases, as we 
attempt to organize our classes into modules, etc., we may notice 
weaknesses in the abstractions that need to be fixed before going 
further.  These are but two of the possible scenarios that may lead to 
changing abstractions.  It should be noted that the need to refine our 
abstractions is oftentimes closely related with the other activities listed 
below.  It should not be viewed as having a single occurrence.  As with 
everything else, it too is iterative in nature. 
 
We need to finalize the interface and implementation of the classes 
and objects.  This will require us to perform analysis to refine of 
existing abstractions sufficient to unveil new classes and objects at the 
next level of abstraction.  Our design is a tangible representation of 
our abstractions, with all of the detail from our efforts to refine.  We 
will make decisions about representation of each abstraction and the 
mapping of these to the physical model. 

Identify Environmental Opportunities, 
Dependencies and Constraints 
As mentioned earlier, every system has non-functional requirements 
that must be taken into consideration at the time of design.  These 
non-functional requirements may represent a very diverse set.  For 
example, some requirements force integration of many legacy 
databases and systems, making for a heterogeneous environment.  
These need to be incorporated into new development efforts.  The 
method of interoperability selected may have an impact on the 
definition of our abstractions.  Other requirements may dictate user-
interface requirements.  When confronted with this in our example, 
some abstractions were modified to add operations that better support 
the user-interface activites (GetFirst(), etc.).  Yet other 
requirements may constrain our system in some way, or introduce 
dependencies.  These must be examined for their impact on the overall 
design. 
 

                                                 
56 The architecture of a system is a representation of its components their relationships, in addition to 
tactical considerations.  See Chapter 9 for a detailed discussion of architecture. 
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Some environments provide opportunities for incorporating and 
leveraging existing classes and objects.  Some of these may substitute 
classes already in the model.  Some of these may change the 
interactions between some objects. 
 
The overall environment, i.e. target platforms, protocols, libraries, 
development and languages will have an impact on the design as well.  
Again, the idea of the design is to create a set of models that 
represent the final step before implementation.  They should describe 
in detail what is to be implemented and how it is to be implemented.  
Without factoring in the target language(s) and platform(s), there are 
detailed design decisions that we will be unable to make, that take 
direct advantage of the environment57. 

Identify Maximal levels for Software 
Engineering Goals 
By now, we are familiar with some of software engineering’s design 
goals, such as Reusability, Reliability and Extensibility.  In order to 
have a good design, we need to attempt to reach these goals in some 
maximal way.  This is because as we have to factor in environmental 
issues into our design.  These issues may ultimately hinder how well 
we attain these software goals in absolute terms.  In our attempt to 
maximize our success, we should focus on strategic decisions and 
attempt to limit or at least control the number of tactical decisions 
made. 
 
As we saw in previous chapters, the characteristics of object-oriented 
development facilitate achieving our software engineering goals.  Of 
course, this is true only if we have accurately and effectively selected 
abstractions, operations, interactions, how well we have employed 
encapsulation, etc.  These will all have an impact. 

Identify and Employ Useful Patterns 
As we saw in Chapter 6, a design pattern is a solution to a problem 
similar to the one we’re trying to solve.  There are various design 
patterns that have been compiled over time, illustrating techniques 
and guidelines for solving many technical problems.  Patterns exist at 
many different levels.  There are patterns for solving technical issues 
such as managing a group of objects (containers).  There are also 
patterns representing larger-scale issues such as architectures.  
Leveraging patterns starts us on the road to our solution.  As we’ve 
seen, it should not be the expectation that patterns will be reused 

                                                 
57 The “environment” being referred to is that which will “host” our system, once operational. 



Object-Oriented Analysis and Design  218 

X52.9267-001  Not for Commercial Use   

unchanged.  Rather, the goal is to identify a similar pattern and make 
the modifications necessary in applying it to the problem at hand.  
 
Note:  The activities that we’ve outlined here in Design are a good 
representation of typical design activities.  However, there may be 
others.  One of the advantages of understanding and developing a 
process such as this is that it can be evolved and extended as 
necessary, as we grow in experience. 
 

Identify
environmental
opportunities

and constraints

Identify maximal
levels for
software

engineering
goals

Identify and
employ useful

patterns

Finalize the
interface and

implementation
of the classes

and objects

Refine classes
and
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Analysis Models

Design Models

 
Fig 7.2 Design  
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Additional Development Phases 
So far, we’ve created (and validated) the concept of the system, did 
our analysis and created our design.  What’s left?  There are a number 
of activities that we have to undertake on the road achieving an 
operational system.  Let us examine the additional phases below. 

Implementation 
The products of the design phases are models of the system that can 
be directly translated into programming code.  In the Implementation 
phase, we perform this translation (and related activities) in 
anticipation of the next phase.  In Implementation, we have to commit 
our detailed design to code, i.e. implement our design using one or 
more programming languages.  For our discussion, the activities of 
implementation are below: 
 

1. Implement the design: develop code, modules and components 
2. Unit test 
3. Maintain documentation 

Implement the Design: Develop Code, Modules and 
Components 
The primary activity of this phase is to develop code, modules and 
components, based on the design.  These will be developed for the 
target environment using the target programming language(s).  It is 
not uncommon for multiple languages to be used, leveraging the 
strengths of each.  Indeed, in the era of web development, this is 
more the rule than the exception. 
 
The architecture, (i.e. how the application is partitioned) and the 
prioritization will dictate where, i.e. which functional area of the 
system, development will logically begin.   

Unit Test 
A unit test represents the execution of a very isolated and localized set 
of test cases, usually done by one or more members of the 
development team.  The goal is to have every unit, i.e. executable 
partition, of the system tested before it is used in a larger context, 
such as when integrated with other components or modules. 

Maintain Documentation 
Much earlier, the point was made that there was much iteration in 
developing object-oriented software.  That is true here in 
implementation as well. Of importance is maintaining the 
documentation that was produced as a result of Analysis and Design.  
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Some of our implementation tasks may lead us to have to modify our 
existing abstractions and relationships.  Other issues may arise that 
cause us to have to add completely new abstractions as well.  
Regardless, we must keep our models synchronized with the system 
being developed at all times.  This is not necessarily a trivial task.  To 
that end, some systems allow developers to reverse-engineer code to 
obtain models.  As an aside, some systems also provide code-
generation capabilities, based on the models and target language. 
 

Develop code

Unit Test

Update Documentation

 
 

Fig 7.3 Implementation 

Deployment 
In the deployment phase, we move from our development efforts 
towards deploying our software in a production environment.  Along 
the way, we have formal testing that must be executed, such as 
integration testing and user acceptance testing.  Here, we are evolving 
the implementation through successive refinements.  As before, the 
models should be kept in line with the system, or the documentation 
will be obsolete and thus much less useful. 
 
Deployment also includes the physical installation of the software (and 
all necessary hardware).  This will include the necessary authorizations 
and permissions, obtaining space in a data center, etc.  This may 
include preparation and delivery of system documentation, including 
specific installation documents, architecture documents, runbooks, 
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manuals, etc.  Strategies involving executing new and old systems in 
parallel, retiring old systems, etc. would be executed in the 
Deployment phase.  At the end of this phase, we will have a fully 
operational system.  

Maintenance 
In the Maintenance phase, we are managing the evolution of an 
operational system (post-delivery).  Once operational, there may be 
additional phases of development that have to be undertaken, issue 
resolution, brand-new requirements as a result of changing business 
environments, etc.  The process of determining how to implement new 
requirements is the same as was done before for new development.  
However, the fact that the system is operational requires significantly 
more care, as compared to new development.   

Why do we Need a Process? 
In summary, our overall process describes various activities, 
partitioned into phases.  These activities reflect those of an individual 
or small team those of the entire development team (larger scale), 
under the direction of a Project Manager or equivalent. 
 
We need to define a process in order to have the outcome repeatable.  
We need to be able to define our activities in such a way as to be able 
to repeat and evolve them.  As requirements and environments 
change, so should our processes evolve so that we can apply our 
experiences and any new design patterns. 
 
We can look at our discussion as reflecting two ideas.  The first is that 
we can partition an overall development effort into phases.  The 
second is that within each phase, we have specific activities.  In both 
cases, it is important for us to know how to partition and organize the 
effort required to develop software in an object-oriented way. 
 
Our overall lifecycle is now partitioned into these phases, each of 
which embodies a different set of overall activities: 
 

1. Conceptualization/Requirements Definition 
2. Analysis 
3. Design 
4. Deployment 
5. Maintenance 

 
We could then use this phased approach to the lifecycle for overall 
project planning and project tracking.   
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In reviewing our software development process, we have decided to 
partition our process in this manner and use this terminology to 
express what each phase represents and also what activities occur in 
each phase.  This is not nearly as “cut and dried” as it may seem.  
First, our overall process is inherently iterative.  This means that even 
though we have seemingly sequential phases, this may not be the 
case in practice.  This needs to be accounted for in the overall planning 
process.  Secondly, it is much more important that there is an 
understanding of what activities are required for developing software, 
without being to “hung up” on the names used for each phase.  This 
phased breakdown is very similar to other phased approaches we’ve 
seen – the terminology may be different.  In addition, some have 
partitioned testing58 into it’s own phase.  We have included it as a sub-
phase of Deployment (in addition to installation, etc.).  It is far better 
to understand that testing is important and decide logically where it 
should go, or understand why it was placed in a certain phase. 
 
The figures below depict two views of a project plan, a Gannt chart 
and a tasks sheet.  A project plan is a tool used to plan projects and 
manage timelines.  The views are from a popular project planning 
application, Microsoft Project. 
 
 

                                                 
58 With the exception of unit testing. 
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Fig 7.1 Task Sheet 
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Fig 7.2 Gantt chart 
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Chapter Summary 
• A software development lifecycle describes the activities involved 

in developing software. 
• A development lifecycle may be separated into phases, such as 

Conceptualization, Analysis, Design, Implementation, 
Deployment and Maintenance. 

• Object-oriented system development processes involve multiple 
levels of detail focused on selecting and refining abstractions and 
focused on the activities in the various phases of development, 
through implementation and testing.  
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Exercises 
1. In your own words, provide a definition for a “phase” of a 

development cycle. 
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Chapter 8 
 
Creating and Using Object Oriented 
Software Interfaces 
We have already encountered the use of the word “interface”, many 
times.  In this chapter, we expand on that, extending the more 
general definition we saw earlier.  In addition, we will see that 
interfaces can be generalized even further for use in distributed 
systems (chapter 9). 
 
An interface is a set of methods that are defined in a contractual way.  
These methods represent a certain set of operations as required by the 
environment.  So, an interface represents a named collection of 
publicly accessible methods.  The interface offers no inkling as to how 
any of these operations is implemented.  Implementation is not the 
job of the interface.  This collection of operations (methods) is used to 
specify a service of a class or component.  Briefly, a component 
(discussed in Chapter 9) is a physical part of the system comprising of 
one or more objects.  A component implements one or more 
interfaces. 
 
Practically speaking, an interface is a named collection of method 
signatures with the possible inclusion of constants and user defined 
types.  The interface represents a contract that binds the client that 
uses the interface, i.e. invokes methods defined in the interface, and 
the server that provides an implementation for each method in the 
interface.  The contract states that if you invoke a method in an 
interface and supply appropriate data types as parameters (input, 
output or either), as per signature, then you will receive appropriately 
typed values in return.  This is all according to the signature of the 
methods. 
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This separation of interface and implementation should be familiar.  
Earlier in the course, we discussed encapsulation as one of the 
features of object-oriented development.  With encapsulation, the 
implementation is completely separate and hidden, with the interface 
giving the only clues as to the capabilities of the object. 
 
As we said earlier, the term interface is a general one.  We will explore 
an interface as a specialized abstract construct.  We will also examine 
an interface as it applies to the development of distributed systems.  
First, we will revisit the notions of interfaces and implementation. 

Interfaces vs. Implementation  
Earlier in the course, we defined an interface as comprised of the 
publicly accessible methods and fields of a class.  To clarify further, 
this means the methods and fields that are publicly accessible by code 
in other classes, or more generally, code outside the class.  By 
outside, we mean code not within any methods of the class.  The 
interface of a class, as defined this way, is important to us because 
that is the only view of the class from the outside, i.e. externally 
visible.  This is one of the advantages of the object-oriented paradigm.  
We are able to hide the implementation of our functionality inside our 
class.  So, the only view of our class that others see is the set of public 
methods and fields that are externally visible. 

Applications in OO Design 
There is another view of “interfaces” in the object-oriented paradigm.  
This is a topic that will resonate with the Java knowledgeable among 
us.  For the rest of us, it is a feature that we should be aware of and 
possibly add to our object-oriented arsenal.  It is not covered in the 
text.  
 
Suppose we remove the set (or a subset) of the public methods 
(names only) from a class place them in their own structure, similar to 
a class.  In other words, suppose we create a new abstraction (similar 
to, but not equivalent to a class) that only has method names, but no 
implementation?  What would this mean?  This would mean this 
structure (our new abstraction) would imply some behavior.  
Remember, we said a class’ behavior was “provided” by the methods 
of our class, i.e. the functionality implemented by the methods.  This 
also means that any class that wanted to provide this functionality 
would implement the methods in our structure.  So, we’re saying, in 
addition to defining abstraction that become classes, we can also 
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create abstractions of certain behaviours of classes (i.e. methods) that 
form part (or all) of the class’ overall interface.   
 
In object-oriented languages that support interfaces in this manner, 
(such as Java), this is similar to a class definition.  In Java, it is called 
an “interface” (surprise, surprise) and it introduces a new type to the 
compiler, as a new class does.  However, unlike classes, the methods 
are not implemented in these structures.  They are all abstract.  This 
makes this structure very similar to abstract classes.   
 
Why do we care about this kind of abstraction?  There are a few 
benefits of being able to group sets of methods into structures such as 
these.  For example, we can have unrelated classes all implement the 
same interface(s).  As a result, these classes all share behaviours in 
common.  In addition, as they introduce new types to the compiler, we 
may create references (not objects) which we may then use to 
manipulate the classes that implement these interfaces. 
 
Hmmm.  You may (correctly) say that this is similar to the 
polymorphic behavior we discussed earlier in the course.  This is true.  
However, there are significant differences.  For us to have the 
polymorphic behavior as discussed earlier, we must exploit the is-a 
relationship of inheritance.   
 
Let’s examine this further.  Let’s say we create an abstract base class 
with five (5) abstract methods, in addition to other stuff.  As we 
discussed before, in order for us to be able to create any objects of our 
subclass(es), we must implement all five methods in the subclass.  If 
we don’t, the subclass will be abstract as well.  Now, let’s say we 
wanted to inherit from the superclass in a subclass but we wanted to 
(or really, only needed to) implement three of our five abstract 
methods.  In order for us to be able to create objects of this 
superclass, we would have to provide an implementation for each of 
the other two methods, even though we did not need them 
implemented in our subclass.  So, in order to leverage polymorphism, 
etc. as a result of inheritance, we have to be aware of inheriting stuff 
we do not need.  This is really an issue of the design of classes and 
hierarchies.  In languages that support interfaces, we have other 
options.  We could define an interface that has the three abstract 
methods that are truly needed.  The class we are trying to define (no 
longer a subclass, as these interfaces have nothing to do with 
inheritance) would then implement these methods if it need to.  Once 
you decided to implement an interface, you would then have to 
implement all of the methods in the interface. 
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Interfaces, as new “types” have a few other features.  Java does not 
support multiple inheritance but supports interfaces.  C++ does 
support Multiple Inheritance, but does not support interfaces such as 
these.  Hmmm again.  Multiple inheritance could be a neat tool to have 
in one’s arsenal.  We haven’t discussed multiple inheritance very 
much, other than an honourable mention early on.  In multiple 
inheritance, we have more than one base class.  The other aspects of 
inheritance stay the same.  In Java and C#, we are allowed to 
implement multiple interfaces, not inherit multiple classes.  In 
addition, as mentioned earlier, we are allowed to create variables that 
are references of the interface, and use this reference to manipulate 
objects of classes that implement that interface.  This remains true 
even if our classes implement multiple interfaces.  This gives us an 
alternative to Multiple Inheritance, without some of the pitfalls of 
inheriting from multiple classes.   
 
Anytime Multiple Inheritance or multiple implementation of interfaces 
is employed, there are potential pitfalls that may arise.  One of the 
issues that may arise with incorrect use of Multiple Inheritance is the 
following.  Suppose you have a subclass that inherits from two 
superclasses, each of which has a method with the same signature 
defined.  Due to the ambiguity, which method do we implement if they 
were defined as abstract?  If the methods were not abstract in the 
super classes, which is actually called when we attempt to invoke a 
superclass method?  However troublesome this might be, it isn’t 
limited to Multiple Inheritance.  A similar issue may arise with the 
multiple implementations of interfaces.  If more than one interface has 
a method with the same signature and both (or more than 2) 
interfaces are to be implemented in one class, how do we resolve this 
issue?  Don’t forget, with these interfaces, all the methods in the 
interface are abstract.  The implementation occurs in the class.  
Avoidance of these issues would seem to be the best defense. 

Polymorphic Behavior and Interfaces  
Above, we described interfaces as specialized abstract structures.  
While these structures are treated differently from classes (depending 
on implementation), we are able to take advantage of polymorphic 
behavior involving these structures.   
 
In languages that support interfaces as separate structures, each 
definition of an interface introduces a new type to the compiler (as 
with classes).  Thus, we are able to construct references of the 
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interface type that may be used to manipulate objects of classes that 
implement the interface.  This allows polymorphic behavior as we may 
declare such a reference and use it in this way, without knowing the 
specific type of the object referred to.  An example would be a function 
defined with its parameter being the reference of the interface type.   
Any reference to an object of a class implementing this interface could 
then be passed in as the parameter.  Inside the function, the object 
reference could then be used to invoke any method that was defined in 
the interface (as in Java). 
 
Interfaces themselves may also be part of an inheritance hierarchy.  
This means that an interface may inherit from another interface.  The 
net of this is that the sub-interface (as opposed to the super-interface) 
would present the all of the methods defined in the sub- and super-
interfaces.  Any class implementing the sub-interface would have to 
implement all of the methods from both interfaces if it was to be 
concrete (i.e. able to be instantiated).  As with an inheritance structure 
comprised of classes, we are able to exploit the polymorphic behavior 
that arises when we use a super-interface reference to manipulate 
objects of a class that implemented sub-interfaces. 

Interfaces in UML 
Here is an example of a simple hypothetical interface in UML: 
 

+operation1(in Parameter1 : unsigned short(idl), in Parameter2 : sequence(idl))
+operation2() : String
+operation3(in Parameter1 : char, out Parameter2 : int) : bool
+operation4() : char

«interface»
Object Services

 
Fig 8.1 UML 

 
In this example, we have an interface with four methods defined.  
Operation1 has two input parameters, Parameter1 and Parameter2.  
Parameter1 is defined as short, Parameter2 as sequence.  These 
happen to be types defined as user defined types in the IDL (Interface 
Definition Languages (IDL) are discussed later in this chapter).  
Operation1 does not define a return value.  Operation2 takes no 
parameters and returns a String.  Operation3 takes two parameters: 
an input parameter (Parameter1 – defined as char) and an output 
parameter(Parameter2 – defined as int).  Operation3 returns a 
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boolean (true/false) value.  Operation4 takes no parameters and 
returns a character. 
 
Here is an example in UML depicting an object that implements this 
simple hypothetical interface: 
 

+operation1(in Parameter1 : unsigned short(idl), in Parameter2 : sequence(idl))
+operation2() : String
+operation3(in Parameter1 : char, out Parameter2 : int) : bool
+operation4() : char

«interface»
Object Services

Service Object

Implementation
of interface

 
 

Fig 8.2 Interface illustration 

 
In this example, the object Service Object implements the Object 
Services interface.  The dashed line with the “open” triangle at the end 
indicates the realization of the interface, i.e. the implementation of the 
interface. 

Support in OO Development 
Interfaces as specialized, abstract structures, are supported by 
languages such as Java.  However, as you’ve seen, interfaces are quite 
similar to abstract classes.  In fact, in C++, which doesn’t support 
interfaces in this way, but which does support Multiple Inheritance, we 
can define an abstract superclass with no implemented methods.  
Remember, for a class to be abstract, it only needs one abstract 
method.  For our approximation to work, we will define a class with no 
implemented methods59.  In addition, all of the methods in our 
superclass would have to be declared public60.  We could then add this 
class as a superclass, using Multiple Inheritance.  As a result, we 
would be able to create references (and pointers – available in C++) 
that we could use to manipulate objects of the classes that inherited 

                                                 
59 All methods would have to be abstract to have equivalence with the Java interface construct. 
60 All methods in a Java interface are public by default. 
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from this additional superclass.  This would effectively give us the 
same behavior61.  Any class that needs to support this “interface” 
would inherit from our abstract superclass.  
 
If the language supports the abstract construct “interfaces”, you will 
be prevented from implementing any of the methods defined in the 
interface directly within the interface.  The interface is completely 
abstract – you may only implement them in the class that implements 
the interface.  In other languages, there is nothing language-specific 
which will prevent someone from implementing a method directly in 
the abstract class. 
 
Some may argue that it may be useful to have some default behavior 
“built-in” to the interface definition and thus, an abstract class 
representing an interface, but with some methods implemented is fine.  
However, in order to make the correct determination, we must look at 
a few things.  An interface in this context is a definition of various (one 
or more) methods to be implemented by a class.  It does not 
represent the implementation of any of the methods.  Keeping this in 
mind (and as discussed above), the decision will be based on the 
correct “factoring” of the methods and whether or not the cost of using 
a class hierarchy is justified, vs. an interface, whether as a separate 
structure or as an abstract class with no implemented methods. 

Interfaces in Distributed Systems    
By now, we’ve seen that the use of the term “interface” extends 
beyond its use with classes.  Interfaces, with the same meaning, are 
also used by distributed system to define a contract between two 
objects or components.  The term “distributed” as used here means 
that two objects or components, are communicating, are located on 
physically different hosts (i.e. different computers).  In fact, these 
objects may be geographically distant.  In fact, these object or 
components may have been developed in completely different 
languages, on completely different platforms.  Regardless, as we’ve 
said before, distant or not, these object are able to collaborate to 
provide the overall functionality of the system.  With encapsulation, we 
have the separation of implementation and interface.   
 

                                                 
61 This is a limited equivalence.  There is no enforcement of the class being completely abstract and all 
methods being public in C++, as our “interface” would be a regular class.  Java’s interfaces are completely 
different constructs and behave differently from classes.  Java enforces the rules differentiating interfaces 
and classes. 
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As before, the interface defines the visible behavior of an object (i.e. 
public methods).  Once the interface is defined, the implementation of 
the interface could proceed in parallel with the development of the 
client.  The client need never know any details about the 
implementation of the operations defined in the interface.  Indeed, as 
mentioned earlier, the development of the server (i.e. class(es) 
implementing the interface) could be in a language different from that 
used for the development of the client(s) and could be deployed on a 
platform different from the one used in deployment of the client.  This 
is in keeping with the “spirit” of an interface.  Systems incorporating 
distributed objects, such as those using CORBA (Common Object 
Request Broker Architecture – various languages, various platforms) 
and/or RMI (Remote Method Invocation - Java only) utilize such 
interfaces. 
 
For interfaces utilized in distributed systems based on CORBA, each 
interface is specified using an Interface Definition Language (IDL), 
which is independent of the languages used for development.  The IDL 
specifies each method, their parameters and return types.  Optionally, 
the IDL for a particular interface may also include the definition of 
user-defined types. As with other interfaces, there is no 
implementation.   Systems based on COM (Component Object Model – 
various languages, MS platforms only) also use an interface and an 
IDL to define the contract between components.   
For interfaces utilized in distributed systems using RMI (Java only), the 
interfaces utilized are Java interfaces (as discussed earlier). 
 
This was a brief introduction to a new concept that you should be 
aware of.  In this course, we are creating a set of tools that will be at 
our disposal when we are required to perform in our role as object-
oriented analysts, designers and developers.  This view of interfaces 
introduces another tool in our toolbox.  If our target language is Java, 
we will have a “direct translation” of this idea.  If our target language 
is C++, we can approximate this behavior by inheriting from an 
abstract class that effectively defines our “interface” for any other 
class.  We can then approximate the behavior observed in Java.  These 
become additional design and architectural tools.    
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module FinancialInstitution {

interface Customer {
string GetCustomerNumber();
...

};

interface Account {
string GetAccountNumber();
...

};
...

};
 

Fig 8.3 CORBA IDL example 

 

Sample Project 
In the next chapter, we revise our architecture to make our example 
application component-based.  Here’s a sneak peek at the interfaces 
for two of our components.  These interfaces describe the public 
methods of each component.  As above, the interface does not supply 
any information regarding implementation. 
 

+SearchByID() : <unspecified>
+SearchByName() : <unspecified>
+UpdateStudent() : <unspecified>
+AddStudent() : <unspecified>
+DeleteStudent() : <unspecified>
+AddSubject() : <unspecified>
+DeleteSubject() : <unspecified>
+ModifySubject() : <unspecified>
+AddMajor() : <unspecified>
+DeleteMajor() : <unspecified>
+UpdateMajor() : <unspecified>
+GetReport() : <unspecified>
+GetSystemInformation() : <unspecified>
+CalculateDiscount() : <unspecified>

«interface»
BusinessComponentInterface
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+SearchByID() : <unspecified>
+SearchByName() : <unspecified>
+UpdateStudent() : <unspecified>
+AddStudent() : <unspecified>
+DeleteStudent() : <unspecified>
+AddSubject() : <unspecified>
+DeleteSubject() : <unspecified>
+ModifySubject() : <unspecified>
+AddMajor() : <unspecified>
+DeleteMajor() : <unspecified>
+UpdateMajor() : <unspecified>
+GetReport() : <unspecified>
+GetSystemInformation() : <unspecified>

«interface»
DatabaseComponentInterface

 
 
These will be fully explained in the next chapter. 
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Chapter Summary 
 

• An interface represents the visible behavior of an object, i.e. the 
public methods. 

 
• Interfaces exist in distributed systems development also. 

 
• Interfaces (as an abstract structure) support polymorphism. 
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Exercises 
1. In your own words, explain what you would expect to happen if a 
class that implements an interface is: 

a) an abstract super class 
b) a concrete super class 

What would the effect be on subclasses of each? 
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Chapter 9 
 
Object-Oriented Software 
Architecture 
Now that we have discussed how we identify and qualify candidate 
classes and conduct design, it is important that we look at these 
activities in a larger context.  In this module, we will discuss areas 
such as software architecture, frameworks and reuse and how they 
impact (and exploit) our object-oriented approach. 
 
In the last chapter, we discussed the term “interface”.  We mentioned 
that interfaces are also utilized in distributed systems, such as those 
built utilizing CORBA62, DCOM63, EJB64 and RMI65.  In this chapter, we 
will explore components and distributed systems, as part of an overall 
architecture. 

What is Software Architecture? 
The term “software architecture” means many different things to many 
different people.  As a result, before we go forward, we must settle on 
a definition of this term that will serve as our backdrop. 
 
We will define the overall software architecture as the collection of 
high-level views of the significant software components of the system.  
So, the architecture is comprised of different views.  These views may 
include (not mandatory) the logical view, implementation view, 
process view and deployment view.  Each of these depicts the 
structure of the system from a different perspective.  Thus, software 

                                                 
62 Common Object Request Broker Architecture 
63 Distributed Component Object Model 
64 Enterprise Java Beans 
65 Remote Method Invocation (Java) 
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architecture is also an abstraction, i.e. it describes system 
implementation in terms of its structure, functional decomposition into 
components (including their properties, etc.), interfaces, rules, 
constraints and communication (including protocols).  In order to 
present this data, architects employ architecture diagrams.    As an 
aside, the software architecture is obviously one of the architectural 
views for a system.  For example, in addition to a system’s software 
architecture, there is also its infrastructure architecture, describing the 
infrastructure components supporting the system.  This depicts the 
hardware and communication aspects of the system, i.e. what 
hardware systems are deployed, connectivity (LAN, WAN, Internet, 
etc.), etc. 
 
The difference between architecture and design is subtle.  In 
architecture, we care about the interactions between our significant 
elements (such as components) with respect to overall scaling and 
performance, whereas in design, we are more granular, designing and 
paying attention to the detail of individual classes and components. 
 
Object-oriented software architecture is therefore the activity 
described above, with respect to object-oriented systems.  Unlike 
traditional architectures, object-oriented software architectures 
emphasize the placement of distributed objects and interfaces, 
components and interfaces, persistent objects and inter-object and 
inter-component communication. 

Object-Oriented Architectural 
Elements 
As outlined above, our software architecture will reflect the significant 
components of our system.  This implies that not everything in our 
system is significant.  In fact, in many cases, the elements of our 
architectures are not individual classes.  In this context, some classes 
will be similar to “atoms”, where our architecture is depicting 
“molecules”.  Obviously, the “atoms” (i.e. individual classes) are 
important parts of the “molecules”, but if the “molecules” are the level 
of abstraction that our architecture is depicting, then they will be of 
greater interest to us.  
 
We have used the word “component” above, in our definition of 
software architecture.  A “component” is analogous to the “molecule” 
above.  A component is an architectural element, i.e. it is something 
that is featured in (or included in) architectural diagrams and 
descriptions.  A component is a stand-alone, (i.e. deployable), part of 
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a system’s implementation.  This means, a component is somewhat 
independent.  A component is made up of one or possibly multiple 
object instances.  However, as with “atoms” and “molecules” above, 
these object instances will possibly be omitted in the depiction of the 
system’s structure.  A component represents the collaboration of 
related classes, the aggregate of which provides some significant 
functionality of the system.  As with classes, a component typically has 
an interface that describes the methods exported (i.e. made public) by 
the interface. 
 
If we revisit the definition of object-oriented software architecture 
above, we can now say that the object-oriented software architecture 
depicts the placement of and interaction between the components of 
the system, each component being comprised of possibly multiple 
object instances. 
 
Another term used frequently is “node”.  At run-time, a “node” is 
conceptually similar to a component.  However, a node represents the 
hardware on which a component is deployed, i.e. a processor or 
device.  

Designing with Components 
In Chapter 6, we walked through the individual steps to get us to our 
object-oriented design of our system.  However, good our design was, 
this was a trivial system for us to design.  In the real world, systems 
are significantly more complex (understatement).  In many cases, in 
order to provide the functionality, we need a construct that groups our 
classes, each of which provides some of the overall functionality.  This 
construct that is required needs to be logical as well as physical.  We 
need to have something that we can use to logically group classes that 
are collaborating.  For deployment, we need to have a physical 
construct that we can use to manage this group of classes.  Use of 
components also helps in organizing and deploying elements of the 
system.  Components may be deployed in the same location, in 
geographically diverse locations.  The use of components allows the 
classes that collaborate to be packaged effectively for deployment.  A 
“package” is a container to manage elements, such as classes and 
components.  Deploying in this way is termed “distributed”.  Note – we 
now have to expand our use of the term “object”.  The term “object” 
refers to instances of classes and components.   
 
The objects within a component may also be grouped logically into 
layers.  Each layer, composed of one or more objects, provides 
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services to its immediate outer layer.  Conversely, each outer layer is 
a client of its immediate inner layer.  In addition, layers can only 
communicate with their immediate neighbours, i.e. the immediate 
inner or outer layer. 
 
Unlike layers, inside components, tiers are logical constructs that 
represent physically separate components.  A client/server system has 
two tiers, the client and the server.  In a three-tier system, the 
components take multiple roles.  The second (or middle) tier is both a 
server to the first tier and a client to the third tier.  In turn, each tier 
may also be comprised of multiple components.  Generalizing this, we 
may have multi-tier systems, where there are multiple client/server 
pairs.  Similar to layers, communication only exists between 
neighbouring tiers – we would not be allowed to “skip” or circumvent a 
tier. 

Using Components 
Components are important “building blocks” of our overall 
architecture.  But how do we apply our knowledge thus far into 
designing and using components?  In order to do this, we must note 
the following features of components: 
 
1. Components are run-time (stand-alone) executables 
 
2. A component is typically larger than objects.  It could be an object, 
but it is typically composed of many objects. 
 
3. A component has a well-defined, external interface that is distinct 
from the internal implementation.  As we discussed in the last chapter, 
(encapsulation), the implementation is hidden inside the component.  
Encapsulation is a cornerstone of object-oriented development.  All 
that is visible to clients is the interface.  Also as discussed last time, 
the interface is defined in a contractual manner.  Each of the 
component’s methods is defined in terms of its signature.  In addition 
to the operations, the interface may also include user-defined types. 
 
4. A component is comprised of one or more objects.  Each of these 
objects is an instantiation of a class.  From a few sessions ago, we 
know that we may have multiple copies of an object, each with it’s 
own state.  However, the component is not something that we 
instantiate into multiple copies.  We would not create multiple 
instances of a component, each with its own state the way we could 
with objects. 



 243  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

 
5. Components are usually designed with some consideration given to 
the environment in which the component will run.  This is typically not 
the case when designing classes.  Component designers have to 
consider what will “contain” their component.  They may have to take 
advantage of services provided by the environment (or container).  
Component environments are typically standardized.  This enables a 
designer to incorporate additional components into a design.  This 
facilitates software reuse, as components may collaborate, yielding 
more functionally useful architectures.  Components will also demand 
certain services from the environment and in turn have to provide 
certain services to the environment. 
 
6. Components may support multiple interfaces.  In fact, some 
components support an interface that allows other components to 
supply a query that returns the name of each interface implemented 
by the component. 
 
7. Components may be considered lightweight or heavyweight.  A 
lightweight component is one that relies on external software to 
accomplish its primary tasks.  A heavyweight component includes all of 
the services it needs to operate in a given environment. 
 
8. Components represent physical “packaging”.  Classes represent 
logical abstractions.  Components live in the physical world, i.e. at run-
time.  Classes do not. 
 
Given these features of components, which objects should be 
packaged in to a component?  The answer depends on many, many 
variables.  In earlier sessions, we discussed class design, i.e. what 
abstractions make good classes.  As part of that exercise, we 
discussed the metrics such as completeness, primitiveness, etc.  We 
said that the class should have a set of methods representative of the 
implied functionality and that there should be as many as required to 
give a complete view (cohesiveness and completeness).  With 
components, we have to take a similar approach.  A component is 
comprised of possibly many objects.  However, a component is viewed 
from the outside as an architectural unit.  Thus, a component provides 
a “block” of functionality, i.e. some particular behavior.  As such, all of 
the objects that are included in the component should contribute to 
this overall functionality.   
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As you can see, this is similar to the evaluations that we have to do for 
objects.  This is as it should be, as we should not have “weaker” 
object-oriented designs as a result of using components. 

Components and Distributed Systems 
As with objects, at run-time, components are also collaborating to 
provide the overall functionality of the system.  However, with each 
component a stand-alone executable, we are able to deploy 
components on different platforms.  Systems deployed in this manner 
are termed “distributed”.   
 
Earlier in this section, we mentioned that unlike objects, components 
have to interact with their environment.  Thus far, we have discussed 
components in the context of providing an implementation for the 
operations in the interfaces only.  However, in order for components to 
be deployed on different platforms and interact with other components 
and objects, there needs to be some lower-level services that are 
provided which would enable or facilitate this communication.  Name 
and directory services, obtaining access to remote methods, 
translation and transmission of parameters and return values, security 
and license services, etc.  Imagine these in the context of two 
platforms as different as a mainframe and a PC.  Assume that there 
are network protocols and media to consider in terms of connecting 
the two platforms.  In addition, other services may be necessary, such 
as distributed transaction processing, persistence and the ability to 
recover from failures (fault tolerance), etc.  The need for these 
services arises from the increasing complexity of modern day systems 
and the need for these systems to be reliable.  These are services 
typically provided by the environment in which the component runs.  If 
each component designer had to implement all of these services, a 
distributed architecture would be near impossible to achieve, not only 
because of the added complexity of each component and the added 
work of creating the component.  In addition to these, each 
component designer could possibly implement these in a proprietary 
way.  If they did, there would be no interoperability.   
 
Each component designer is more able to focus on the functionality the 
component is provided, instead of that and everything else.  In fact, 
the expertise that would be required to develop “everything else” is 
decidedly non-trivial.  Since the environment provides services such as 
these (and others), the environment needs to be able to communicate 
with each component.  The environment, to some degree, has to keep 
tabs on each component, registering the component when it starts, 
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being aware of its lifetime and its destruction.  The environment may 
allow a component to be started once it recognizes a request for an 
operation defined on an interface implemented by the component.  
The environment needs to interact with the component.  As a result, 
there may be additional, separate interfaces that need to be 
implemented by the component.  These additional interfaces (one or 
more) could be comprised of methods called by the environment.  In 
addition, there may also be methods provided by the environment that 
have to be called by the component to keep the environment aware of 
the component’s state.  The environment may provide “factories”, 
which are able to launch a component once a request for an operation 
on that component arrives.   
 
The environment may utilize various strategies to achieve the goal of 
secure and reliable component execution.  Enterprise Java Bean (EJB) 
containers (EJB = Java component) are an example of an environment 
in which components execute.  Servers such as BEA WebLogic and IBM 
WebSphere are EJB containers.  Based on the EJB container 
specification published by Sun Microsystems (provided a standards 
based environment), EJB containers such as these provide the services 
mentioned above (among others) to each component they host.  This 
frees the component designer to focus on the business functionality 
they need to implement.  CORBA implementations, such as Iona Orbix 
provide similar services for CORBA components written in many 
different languages.  In each case, the “container” or environment is 
based on a standard.  This allows the reuse of components developed 
by others, as long as they conform to the standard. 
 
In addition to the design of the components and their interactions with 
their environments, there is another aspect to consider.  Components 
are deployed onto nodes.  The deployment strategy could have impact 
the system’s overall performance greatly.  Decisions have to be made 
about what processor or device configurations to use, in addition to 
where geographically they should be located.  There is also potential 
for the strategy to include component or node clustering.  In 
clustering, we have multiple instances of the same components on 
different nodes.  When a request comes in, one of the nodes satisfies 
it, based on a random selection, a round-robin selection, where each 
node is selected one after the other in a cyclic fashion or load-
balanced, where the node with the least workload is chosen.  Each of 
these options has positives and negatives.  The environment may also 
supply these or similar services.  Again, decisions made regarding 
these areas may impact system performance greatly. 
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Components in UML 
As described above, software architecture depicts one or more views 
of a system.  This depiction is typically via diagrams.   In UML, we can 
use a deployment diagram to model our architecture.  This diagram 
will describe the components and nodes of the system with the 
connection between nodes and components.  A simple deployment 
diagram is as follows: 
 

Component A

Node

Component B Component C

1

1

*

*

*

*

Simple Architecture Diagram

 
Fig 9.1 UML components 

In this example, we have one node (a “server”) and three client 
components.  
Even though we have essentially equated “node” and “component” for 
the purposes of this chapter, strictly speaking, a node may consist of 
many components.   A node represents a processor or device on which 
components may be deployed.  To capture the case in which multiple 
components are deployed on the same node, we could modify the 
previous diagram as follows: 
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Component A

Node

Component B Component C

1

1

*

*

*

*

Simple Architecture Diagram with multiple-component node

Component1 Component2 Component3

 
Fig 9.2 Component interactions 

The node here could represent an EJB server (“container”) or some 
hardware on which multiple CORBA or COM+ components were 
deployed. 
 
Let us modify the example from last time, changing the implementer 
of the interface from an object to a component as follows: 
 

+operation1(in Parameter1 : unsigned short(idl), in Parameter2 : sequence(idl))
+operation2() : String
+operation3(in Parameter1 : char, out Parameter2 : int) : bool
+operation4() : char

«interface»
Services

Implementation
of interface

Service Component

 
Fig 9.3 Component interactions  
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In this example, the component “Service Component” implements the 
interface “Services”.  The operations are the same as presented in 
Chapter 8. 
 
There is a “shorthand” version of this modeling that may also be used.  
We may capture the API (application programming interface) of a 
component as follows: 
 

ServiceComponent Services

Interface
 

Fig 9.4 Component interfaces 

The horizontal line with the circle at the end represents an interface 
that is implemented by the component.  Obviously, the details of the 
interface, i.e. the operations contained therein, are not apparent using 
this form. 
 
Using this shorthand method, we may model a component that 
implements multiple interfaces as follows: 
 

ServiceComponent Services

OtherServices  
 

Fig 9.5 Multiple interfaces 

 



 249  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

Sample Project 
 
In Chapter 6, we progressed through our design phase with the 
underlying assumption being that we were building a single executable 
running on one platform.  Everything would be in one executable, with 
the exception of the actual data in our relational database.  Another 
realization is that everything would be running in the same process, 
including the calls to our database. 
 
Suppose we decided to “component-ize” our simple example.  How 
would we change our existing architecture to partition our system into 
components?  Where would we draw the line?   
 
Informally, we already have three software layers at work in our 
application66.  The user interface is one layer (presentation layer), the 
validation rules, etc. are another (middle layer) and the database 
interactions are a third (database layer).  As a result, we could 
physically separate our applications into three distinct parts, running 
on three separate platforms.  Each of the three parts would correspond 
to one or more components.  We would redesign our application to 
become distributed. 
 
One of the major activities when designing with components, other 
that deciding what components will exist, is defining component 
interfaces.  From our discussion above, we know that the interface will 
represent the functionality provided by the component.  We also know 
that a component may include many classes, so the component’s 
interface may not “match” any single class’ interface.  Let us revise 
our architecture, identify our tiers and discuss the functionality and 
interfaces. 

                                                 
66 Since everything is in one executable and not distributed, we use “layers” instead of “tiers”, as discussed 
earlier. 
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Architecture 
Let’s begin by describing the tiers included in our architecture. 
 
Tier 1  
The first tier would be for presentation.  This tier is responsible for 
presenting the user interface.  This means, this tier would be 
responsible for communicating with the user.  Tier 1 would be a client 
of tier 2, our middle tier that has our “business” logic.  As we 
mentioned above, Tier 1 would only communicate with Tier 2. 
 
Tier 2 
Tier 2 contains all of our “business” logic.  This includes all of our 
validation routines, calculation routines, etc.  This layer accepts inputs 
from tier 1 and translates them into calls to Tier 3.  This is reversed for 
the trip back.  Tier 2 is a client of Tier 3 and provides a service for Tier 
1. 
 
Tier 3 
This tier is provides all database services.  This remains the 
abstraction of the physical relational database. 

Interfaces 

Tier 1 - Presentation 
We do not need to define an interface for Tier 1.  Tier 1 will not have 
any clients.  Tier 1 will be a client of Tier 2. 
 

Tier 2 - BusinessComponent 
The interface to Tier 2 (BusinessComponent) needs to support all of 
the methods that the presentation layer would need to invoke in order 
to present information to the user and to accept information from the 
user.  Let us look at the objects that currently service our presentation 
layer.  Tier 1 can only interact with Tier 2.  So, the interface for Tier 2 
needs to be able to support all of the requests needed by Tier 1. This 
includes the following: 

• Adding new students 
• Modifying students’ information 
• Deleting students 
• Searching for a student by name 
• Searching for a student by ID 
• Obtaining data for reports 
• Maintaining the overall list of subjects 
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• Maintaining the overall list of majors 
• Obtaining system information 

 
Even though our example is simple, there is a bit of work left to do to 
refine the interactions between the objects in our system.  This will 
obviously have an effect on our new architecture as well.  With that in 
mind, let’s define some general methods in our interface for our 
component.  We can diagram our interface for Tier 2 as follows: 
 

+SearchByID() : <unspecified>
+SearchByName() : <unspecified>
+UpdateStudent() : <unspecified>
+AddStudent() : <unspecified>
+DeleteStudent() : <unspecified>
+AddSubject() : <unspecified>
+DeleteSubject() : <unspecified>
+ModifySubject() : <unspecified>
+AddMajor() : <unspecified>
+DeleteMajor() : <unspecified>
+UpdateMajor() : <unspecified>
+GetReport() : <unspecified>
+GetSystemInformation() : <unspecified>
+CalculateDiscount() : <unspecified>

«interface»
BusinessComponentInterface

Business Component

 
 
The return-types of the methods are left as <unspecified> as this is a 
level of detail to which we have not progressed sufficiently. 

Tier 3 - DatabaseComponent 
In the example interface for Tier3 (DatabaseComponent), we see that 
the methods defined there are defined to support the activities 
undertaken by the BusinessComponent.   
For the sake of the example, we’ll take a very simplistic view of our 
component and its interface.  Let’s assume that the interface supports 
executing various SQL statements, in addition to managing 
transactions.  This means, the BusinessComponent would be 
responsible for creating the SQL statements that would be executed by 
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the DatabaseComponent.  We’ve also included a method 
“ExecuteStoredProd” to indicate that we may implement some of our 
SQL operations as stored procedures physically on the database 
server.  The interface to the component is below. 
 

DatabaseComponent

+ExecuteSQLStatement()
+ExecuteStoredProc()
+BeginTransaction()
+Commit()
+RollBack()
+EndTransaction()

«interface»
DatabaseComponentInterface

 
 
Here as well, the return-types of the methods are left as 
<unspecified> as this is a level of detail to which we have not 
progressed sufficiently. 
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Chapter Summary 
• Architecture describes the collection of high-level views of the 

significant software components of the system. 
 

• Components are the building blocks of an overall architecture.  
They represent one or more objects and run as stand-alone 
executables. 

 
• Components are well encapsulated.  They have a well-defined 

interface that is distinct from its implementation. 
 

• Components may be deployed on different platforms. 
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Exercises 
1. When would an instance of a component be created?   
2. When would you have multiple instances of a component? 
3. Compare two objects collaborating in the same program, running 

on the same platform to two components running on different 
platforms.  List (with a brief explanation for each) three issues 
that the component-based system will have to overcome that 
the “single-program” system will not face. 
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Chapter 10 
 
Object-Oriented Methodology in the 
Industry 
In the last nine chapters, we have discussed object oriented analysis 
and design.  In the industry today, object-oriented development has a 
strong foothold.  There are now many environments that support 
object-oriented or object-based development.  In addition, as we will 
discuss below, a specialized process for developing object-oriented 
development has been produced and is available – the Rational Unified 
Process. 
 
Object-oriented development does not exist in a vacuum.  In the 
typical enterprise, there are many platforms – one or more mainframe 
systems, a few to many midrange systems which could be Unix based 
(any one of the flavours) or AS400 based.  In addition, there could 
also exist a plethora of microcomputer-based systems, running various 
versions of Windows, with the possibility of some Macintosh systems 
as well.  To this mix is usually added various databases. 
 
Increasingly, new system requirements dictate that there needs to be 
software that is able to aggregate the various pockets of business 
intelligence that exists on the different platforms.  In many cases, the 
enterprise is also looking to further leverage their existing platforms 
for better returns on their original investments.  This increase in 
complexity affects software development in another way as well.  
Software is constructed based on requirements.  Another way of 
looking at this is to say a system will only be as good as its 
requirements were defined.  One of the largest problems facing 
software development efforts is the issue of incomplete or ill-defined 
requirements.  If the requirements are ill-defined or incomplete, then 
the project runs the risk of delivering software that is unusable to 
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some degree.  We’ve all seen the old cartoon that depicts the sharp 
contrast between what the users wanted and what the systems 
development team delivered.  In addition, if the requirements are 
incomplete, then the scope of the project could keep growing (scope-
creep).  This will severely limit what is delivered, if anything, for the 
project will have to keep expanding to address new requirements.  The 
strategies for combating these issues could be a book in itself, as there 
are many, many variables involved in managing the requirements for a 
non-trivial project.  Indeed, there are books dedicated to this topic. 
 
Coupled with the increasingly shorter development lifecycles (they 
always want it yesterday), you can see what a distressing state of 
affairs could result.  Nowadays, leveraging Information Technology 
(IT) (representative of development, infrastructure etc.) is seen as a 
competitive advantage.  It is no longer seen as only a business 
expense.  In order to provide a better customer experience, reduce 
costs, improve turnaround time, speed time to market, etc., 
enterprises are increasingly putting pressure on the IT departments to 
produce.  For this reason, IT managers are looking for ways to 
improve the IT return on investment (ROI) and to make their senior 
management happy.  This includes addressing issues of 
interoperability, leveraging existing platforms, more easily 
maintainable code, to name a few. 
 
Object-oriented development methodology (inclusive of component-
based systems methodology) can come to the rescue.  We list a few 
specific examples below. 

Requirements Gathering 
This is not object-oriented per se.  However, utilizing use-cases may 
help to alleviate some to the issues that arise when other 
requirements gathering strategies are used.  A “use-case” is a scenario 
from the user’s perspective.  This means that it uses the language 
familiar to the user and describes some aspect of the overall 
functionality.  So, the user requirements for the entire system will be 
comprised of many use-cases, each of which describes some facet of 
the system.  The details of use-cases are beyond our scope here.  
However, as each use-case details some aspect of the system 
(including positive and negative cases) in the language of the user, it 
may be easier to define the appropriate scope, as opposed to using a 
functional specification document.  In many cases, it is sometimes 
difficult to get an overall view of the behavior of the system from the 
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functional specification.  By its very nature, a use-case gives you a 
view of what the expected behavior of the system should be. 

Code Reuse 
There are many aspects of object-oriented development that have an 
impact on code reuse.  Let’s think about this.  From Chapter 1, we 
know that the major aspects of object-oriented development are the 
following: 
 

• Abstraction 
• Hierarchy (inheritance and polymorphism) 
• Encapsulation (information hiding) 
• Modularity 
• Persistence 

 
Let’s look at the major aspects again, in the context of code reuse, as 
follows: 
 

Abstraction 
An Abstraction is a representation of a more complex structure by a 
simpler one that emphasizes only the elements of the more complex 
structure that are deemed relevant in the context of the particular 
system being designed.  We’ve seen where it is critical to choose the 
correct abstractions for our systems.  These abstractions become the 
classes that are the “building-blocks” of our design.  We’ve also seen 
that it is critical that we evaluate the quality of our abstractions.  How 
does this apply to software reuse?  We may reuse our code in a few 
ways.  For example, if we have classes at lower levels of abstraction, 
meaning they provide relatively narrowly scoped functionality, we may 
use objects of these classes to provide this functionality wherever it is 
needed.  If we design relatively monolithic classes that include 
“everything but the kitchen sink”, i.e. at a higher level of abstraction, 
it is less likely that we will effectively reuse these classes as we may 
not need exactly the same behavior again.  We may need a slightly 
different behavior, which we would be unable to easily obtain because 
of the design of the class.  So to promote reuse, we would want to 
concentrate on appropriately scoped classes.  Since we have a 
collaboration of objects at run-time, not necessarily one or two, we 
can appropriately factor the overall functionality into appropriately 
sized classes. 

Hierarchy 
Hierarchy and code reuse go together very well.  If you remember, 
this aspect of object-oriented development covers Inheritance, 
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Composition, Aggregation and Association.  The underlying idea 
utilizes the discussion of appropriate abstractions (correctly scoped) 
outlined above.  If the abstractions (i.e. class definitions) are at the 
correct levels of abstraction, then we may create new classes based on 
inheriting, aggregating or associating previously defined classes (or 
any combination of the above).  With Inheritance, we directly extend 
previously defined functionality, adding the specific functionality that 
we need.  We have access to the functionality of our super class (or 
classes) in addition to the functionality of our sub-classes.  We can 
create increasing complex inheritance hierarchies.  Of course, with 
polymorphism thrown in, we may use existing code with new 
subclasses.  If we do not want to use Inheritance, we may still employ 
Aggregation or Composition.  With these, we may use the “restaurant 
menu” approach, i.e. pick objects from existing well defined classes 
that we need, bringing them together and assembling them to get the 
functionality we need.  Whichever approach is chosen, well-defined 
classes are the key.  From a testing standpoint, we also benefit, as if 
each of our “building blocks” has been tested and certified, the testing 
will center on either our sub-classes (if we used Inheritance) or the 
class that results from assembling these objects (if we used 
Aggregation or Composition).  These are definitely very high on the 
reuse scale. 

Encapsulation 
Encapsulation describes the separation of the interface from the 
implementation.  As we saw in Chapter 8, this applies equally to 
objects and components.  How does this facilitate software reuse?  
There are two perspectives to consider – the client that invokes an 
operation defined in the interface and the object (or component) that 
implements that operation.   With code reuse, we are looking to be 
able to reuse or re-deploy previously developed software.  As we’ve 
discussed previously with abstractions, we have a similar approach we 
have to take with interfaces as well.  Interface, as with abstractions, 
have to be well defined.  Having multiple interfaces with similarly 
defined operations is not the only issue.  Having to have multiple 
similar implementations is a result of this.  The interfaces need to be 
well defined so that the objects or components that implement their 
operations will not be redundant. 

Modularity 
Modularity would seem to have an obvious impact on code reuse.  
Modularity is the ability to decompose a system into a set of 
collaborating objects.  As before, each object is a specific instance of a 
class.  The ability to have an operational system comprised of 
cooperating objects is Modularity.  Modularity, as it applies to code 
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reuse, describes the ability for use to have multiple objects 
collaborating, even if that included multiple instances of the same 
class, each of which was acting as a server providing the same 
functionality, but to multiple clients.  There would be no conflict 
between these object (static variables not withstanding). 

Components and Reuse 
Everything we have discussed thus far may be applied to components 
as well.  If we have a well-defined component that provides some 
functionality, we would be seeking to employ this component wherever 
we required this functionality.  As with objects, it is therefore critical 
that components, though consisting of one or more objects, be at the 
correct level of abstraction as well.  A relatively monolithic component 
will tend to be less effectively reused than one that is defined more 
granularly. 
 
The important thing to remember is that a component is independently 
executing.  Components should be designed to preserve this fact.  In 
addition, the components should have clearly defined functionality.  
The “containers” that support component-based development also 
support multiple client connections, again promoting reuse. 

Code Maintenance 
Code maintenance has been the topic of many a debate.  In a nutshell, 
systems are rarely static structures that never change.  On the 
contrary, in many cases, there are significant changes that may arise 
over time.  These may be due to changing market conditions or 
regulatory requirements, to name two.  As a result, software needs to 
evolve.  Unfortunately, many people attempt to address this fact of life 
when the changes need to happen.  By then it is usually too late.  
Maintainability needs to be designed in.  Object-oriented development 
has some features that facilitate this.  Let us revisit the major aspects 
of object-oriented development in the context of code maintenance. 

Abstraction 
The selection of quality abstractions will impact code maintenance as 
well, for essentially the same reasons as listed above.  If the 
functionality of the system is “factored” correctly into classes, then 
changes to one class should not affect other unrelated classes in the 
system.  In fact, this should be a design goal.  Coupling, as we 
discussed in Chapter 6 will have an impact.  Loosely coupled classes 
will be less affected by changes made to one class.  Unnecessary 
coupling and dependencies between classes lead to code that is less 
easy to maintain. 
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Hierarchy 
Some of the features of Inheritance facilitate code maintainability, 
while some do not.  For example, if I have an inheritance hierarchy in 
place and I need to accommodate a new sub-class, then I only have to 
add my new sub-class, not change any of the existing classes.  In fact, 
if I am exploiting polymorphism, I may not have to change any 
existing code at all.  In addition, if I have to add new functionality that 
is to be available to all classes in my inheritance hierarchy, I could 
easily add this new functionality to the super-class.  In general, once it 
is in the super class, it is available to all sub-classes. However, if I 
have to make changes to a super-class or re-factor the functionality in 
any of the existing classes in my inheritance hierarchy, the task 
becomes very different.  This is because inheritance hierarchies are 
inherently tightly coupled.  This means changes to super-classes may 
cause existing code to break.  Before, we noted we could take 
advantage of adding code to the super-class.  This is a “double-edged 
sword”.  Such changes must be made judiciously.  In essence, 
inheritance hierarchies need to be well-defined also.  The correct 
decisions must be made about the definition of the super-classes or 
super-classes.  If not, the maintainability of the system may be 
compromised.  Aggregation and Composition, being loosely-coupled do 
not have the same issues.  With Aggregation and Composition, we 
seek to be able to make modifications by changing the assembly of the 
building blocks with as little effect as possible.  

Encapsulation 
The separation of the interface from the implementation has many 
direct benefits.  Encapsulation dictates that “clients” will never have 
access to the implementation details of the “server”, whether object or 
component.  Therefore, once we define the interface, “clients” may 
include code to invoke the operations defined in the interface.  
However, due to Encapsulation, we may change the implementation of 
these operations at any time with no effect on the clients.  Keeping the 
interface constant means not removing or changing the signature of 
any methods defined in the interface, or removing the interface itself.  

Modularity 
Here, we see the benefit of Modularity in terms of having multiple 
objects with concurrent lifetimes, as they are aggregated etc. into 
providing the newly required functionality.  

Components and Maintainability 
The ideas expressed above may be carried over to components also.  
We may look at maintenance in terms of how easily we are able to 
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maintain the objects that comprise the component.  We may also look 
at maintenance in terms of what functionality the component “serves”.  
In either case, the discussion above, if extended to components, 
holds. 

Object-Oriented Technology at Work 
Object-oriented technologies are showing up in many places these 
days.  There are many tools and technologies that have been 
developed, each of which is becoming more accepted in the industry.  
We highlight some of these below. 

Rational Unified Process 
Development methodologies are not uncommon, in the least.  
However, in recent years, one development process has come to the 
fore in the industry.  It is a process developed by some of the people 
at the forefront of object-oriented development.  It has many aspects 
taking into account the detailed development processes, as discussed 
in Chapter 7.   What follows is a brief introduction to the Rational 
Unified Process.   
 
Taken as a whole (and if applied correctly), we see that the object-
oriented approach to systems development is an effective tool that 
may be used for complex systems development, in addition to having 
features that may address some of the largest challenges that we face 
when undertaking non-trivial software development. 
 
Rational Software as put forward a software development process 
termed the Rational Unified Process (RUP).  It seeks to address many 
of the deficiencies in general software development methodology, 
resulting in the achievement of process goals as described in our 
discussion of the development process in Chapter 7.  The RUP outlines 
the following: 
 

• Guidance for ordering team activities 
• Specification of which artifacts should be developed and when 
• Tasks for individual developers 
• Tasks from the team perspective 
• Criteria for monitoring and measuring a project’s products and 

activities 
 
The RUP is geared to producing quality object-oriented software using 
a well-defined process that is repeatable.  It employs an interactive 
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developmental approach, as opposed to the traditional “waterfall” 
approach. 
 
The RUP is developed and maintained by Rational Software and 
integrated with its suite of software development tools.  The RUP also 
represents a process framework that can be adapted and extended to 
suit the needs of an organization. 
 
The RUP embodies many of the concepts and software best practices 
we have discussed thus far.  These include iterative development (as 
we’ve discussed earlier), requirements management, architecture and 
the use of components.  In addition, the RUP uses a use-case centric 
approach, where use-cases define the behavior of the system67.  The 
RUP also includes quality of process and product, change 
management, process configuration and tools support A large part of 
the process is the development and maintenance of models of the 
system, using UML.  UML is used to express the artifacts required by 
RUP. 

Rational Rose 
Rational Rose is Rational Software’s tool of choice to capture, manage 
and display the models created in the RUP in UML.  Rose also allows 
the generation of code from models and the generation of models from 
code, thus making it easier to keep your code base synchronized with 
your design.  This will also allow your system to be able to evolve from 
the code or from the design or both. 
 
Let us look at some areas in which object-oriented technology has a 
presence. 

Object-Oriented Databases 
In Chapter 6, we integrated a relational database management system 
into our object-oriented system.  While this is obviously possible (and 
done every day by developers), it is requires us to map our objects 
into a two-dimensional set of tables.  As we have seen, there isn’t 
always a direct correlation between classes in our model and tables in 
our database.  In addition, relational databases have certain rules.  In 
order to produce a join, there must be keys in common, i.e. the 
primary key of one table must be a foreign key in the other, etc.  This 
is not a constraint of the object model.  This is a constraint of the 
relational database.  How may we efficiently persist and query object 

                                                 
67 Use cases are not required. 
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systems without having to do this translation between object and 
relational models?  Is there a better way? 
 
Object-oriented databases were introduced in the mid-1980’s to 
address these problems.  They were designed to store and manipulate 
objects optimally.  Instead of focusing on the data model, as all 
relational systems do, object-oriented database management systems 
focus on the object model.  Based on this, object-oriented databases 
are able to manage very complicated models with complicated 
relationships.  They are able to manage many different kinds of 
objects, as defined by the model. 
 
Generally, a library of routines is supplied with a particular vendor’s 
relational database management system (RDBMS).  This library allows 
us to interact with the database.  In general, we are able to invoke 
those routines, passing them SQL statements68 for execution.  Some 
of these libraries may be vendor and database specific, applying only 
to that particular database.  These may accept extensions to SQL that 
are specific to that vendor.  Others, like ODBC, provide support for a 
standard way of querying a relational database.  They are still vendor 
specific, but the only support the SQL syntax that is “portable” across 
relational databases. 
 
With object systems, we have a similar situation.  Object databases 
are optimized for the transfer of objects between client and server.  
This access is provided transparently through an object manager 
supplied by the vendor.  This provides the necessary navigation and 
management.  The object manager interface includes operations to 
manage transactions, execute queries, etc.   
 
As with relational databases, object-oriented databases have standard 
languages defined for them as well.  Object-oriented databases have 
Object Definition Language (ODL) to specify how an object model is 
defined in the database, Object Manipulation Language to specify the 
application-object manager interactions to manipulate objects, and the 
Object Query Language to specify how applications query object-
oriented databases.  These are analogous to relational databases’ Data 
Definition Language (DDL), Data Manipulation Language (DML) and 
SQL for querying. 
 
 
 

                                                 
68 In many cases, the ability to create tables, drop tables, etc. are also allowed via these routines. 
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Chapter Summary 
 

• Object-oriented development seeks to remedy many of the 
issues in the industry, such as software quality and code reuse. 

 
 



 265  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

Appendix 1 
 
Use Cases69  
Simple statements are useful for capturing and presenting 
performance, hardware, deployment and usability requirements, etc.  
However, it is difficult to use simple statements as the only means of 
capturing functional requirements.  These requirements describe how 
the system behaves in response to user and external system inputs70.   
Use cases are an excellent way to capture and express a system’s 
behavior. 
 
Use cases are a formal way to capture the interaction between those 
providing inputs to the system (actors) and the system itself.  Actors 
may be (but are not limited to) users of the system.  An actor’s role 
represents some functionality of the system that will be exercised.   
 
A use case is a description of the interaction between an actor and the 
system.  It contains at least one narrative description of a scenario.  A 
scenario is an example of specific usage, one in which the actor 
supplies the input and the system demonstrates an observable output.  
Use cases are not required for object-oriented development, but the 
may provide important insights into the relationship between the 
functionality and areas such as testing.  A testing scenario could be 
developed from a use-case scenario in a straightforward way. 
 
A use case may have many scenarios.  There is usually one main 
scenario and possibly many alternate scenarios.  The alternate 
scenarios in the use case may represent exception handling or other 

                                                 
69 First introduced by Ivar Jacobsen. 
70 Functional requirements are more dynamic and typically require accompanying details in order to 
understand then 
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options presented in the main scenario.  Thus, the main scenario may 
be looked at as the “positive” case or path, compared to the others. 
 
A use case is written to express what the expectations of the system 
are, i.e. what the system is expected to do.  This is a view of the 
behavior of the system from the outside.  A use case is not concerned 
with implementation details.  Rather, a use case is concerned only with 
the inputs to and outputs from the system, without describing how the 
inputs are transformed into the outputs. 
 
Use cases are written in the language of the problem-space (domain).  
This means we would not expect to find technical jargon in the use 
case document, per se.  A use case is a way of capturing requirements 
and the requirements express what the expectations of the system 
are.  For all involved, the scenarios in the use case documents should 
be clear and easily understood. 

Use Case Models 
Relationships between use cases are captured in a use case diagram.  
The collection of the use case diagrams is termed the use case model.   
 
A use case is depicted by an oval with the name of the use case 
underneath.  An actor is a stick figure.  As above, the actor represents 
the role that a user71 may have with the system.  The arrow from the 
actor to the use case shows the actor providing input to the use case.  
Therefore, the arrow denotes input. 
 

Actor1

UseCase1UseCase2
«uses»

UseCase3

«extends»

 
Fig A1.1 Use case example 

 

                                                 
71 Remember, a user is not necessarily a person 
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Use cases may be extend other use cases or may include other use 
cases.  These describe association between use cases.  If case A 
extends case B, the actor invokes case B and can go on to case A.  If 
case B includes case A then the actor invoking use case B also invokes 
use case A automatically. 
 
Use case diagrams only show structural relationships between use 
cases.  They do not capture dynamic relationships.   
 
Once the initial information is captured in the use case diagram, other 
diagrams may be brought to bear on the problem.  Other diagrams 
such as sequence diagrams72 may be used to depict a more detailed 
flow of information from actor to system, with respect to a timeline. 
 
Of course, use cases must also be analyzed.  Use cases are used to 
capture requirements.  The analysis of use cases allows us to identify 
classes and objects that will provide the functionality described in the 
use cases.  In addition, we are also able to determine the 
responsibilities, attributes and associations, look at certain 
architectural structures and mechanisms, etc.  The outputs are the 
realizations73 and models depicting the static view of the system. 
 
 

                                                 
72 These sequence diagrams are similar to those used to capture dynamic information about objects. 
73 A use case realization is a special use case that provides a description based on, and in terms of the 
system’s architecture. 
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Appendix 2 
 
 

Brief UML Reference 
 

Introduction 
 
Any non-trivial application needs to be designed in such a way that its 
structure facilitates design goals such as scalability, reliability, 
extensibility, etc.  Their structure (i.e. architecture) must be clearly 
defined to allow unambiguous interpretation.  This will allow relative 
ease of maintenance (among other benefits) as the application 
evolves. 
 
A good structure benefits applications of any size, but, it is particularly 
useful for larger, more complex applications.  This is true because 
looking at the structure of the application will provide a quicker grasp 
of the capabilities of the application.  In turn, understanding the 
capabilities of the application and how it is structured will allow 
designers to leverage code reuse, as it will be easier to grasp how the 
application is organized into modules and/or components, each having 
the responsibility of some specific area of the overall functionality. 
 
There are various ways of describing the structure of an application.  
One could review all the code in the application and derive an 
understanding of the application.  While unambiguous, this method is 
surely the most tedious method that one could apply.  Another 
suggestion would be to use words to describe the structure of an 
application.  Someone could create text descriptions of the application 
that could be as detailed as necessary.  While potentially easier to 
manage than reading the code itself, one would still have to read all 
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this documentation to grasp the structure of the application.  This 
activity would still be very tedious and time consuming.  Instead, we 
use modeling, to depict the structure of an application.  As they say, a 
picture is worth a thousand words. 
 
The Unified Modeling Language (UML), is designed to help you 
communicate the specifications of software systems.  These 
specifications include their structure, design and behavior.  With UML 
(especially via various available UML tools), you can perform an 
analysis of the system’s requirements and create a design that 
satisfies them, using UML’s visual language to communicate the 
results. 
 
This visual language is comprised of a standard set of elements.  The 
importance of standardization is that everyone looking a UML diagrams 
consisting of these elements will have the same understanding as to 
what each element means.  This fact alone greatly improves the level 
of communication one can achieve using UML. 
 
UML has many standard diagram types that can be used to create 
models of systems of widely varying architectures, on varying 
hardware and software platforms.  This inherent flexibility allows you 
to use UML to model single-tier, multi-tier, web-based, or just about 
any architecture.  You can also use UML with any of the popular 
development languages such as C++, Java, C#, VB.Net, etc., including 
even non-object oriented languages. 
 
With UML, you can create platform independent models.  In addition, 
you can also create methodology-independent models.  There are 
various methodologies for software development.  Software 
development methodologies define the formal steps one should take in 
developing software, from the gathering and analyzing requirements 
to the design and deployment of the solution.  One important 
characteristic of UML is that UML’s diagrams are used to help analyze 
and to communicate the architecture of the system, regardless of how 
you performed the analysis or created the architecture.  Plus, since the 
diagramming elements of UML are standardized, various tools can 
interpret the system’s specifications.  UML’s role is to communicate the 
results of our efforts in analysis, design and deployment of our 
system. 
 
As this is a brief overview of UML, we’ll concentrate on many “filling 
out” the UML diagrams and notations introduced in the text.  As a 
result, this appendix will not cover every aspect of UML notation. 
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UML Diagram Types 
UML defines many different diagram types.  We can group these into 
different categories.  With UML, we can look at the static structure of 
our application.  We can also use UML to look at the behavior of our 
application, i.e. how it behaves at run time, or behavior scenarios 
(dynamic diagrams).  Finally, with UML, we can also look at how we 
group areas of our application for organization.  Let’s examine each of 
these categories below. 
 
Application Structure Diagrams 
These diagrams represent the static structure of an application.  The 
specific diagram types included in this category are as follows: 

• Class Diagrams 
• Object Diagrams 
• Component Diagrams 
• Deployment Diagrams 

 
Application Behavior Diagrams 

• Sequence Diagrams 
• Activity Diagrams 
• Collaboration Diagrams 
• State Diagrams 
• Use case Diagrams 

 
Organization Diagrams 

• Package Diagrams 
• Subsystem Diagrams          

 
As this is a brief overview of UML, we will look at simple examples to 
each, along with a description and overview of its usage. 
 

Class Diagrams 
Class diagrams show the static structure of a class.  Since a class is 
the blueprint for an object, the class diagram allows us to see what the 
internals of the object looks like.  
 
In the class diagram, we specify the name of the class, in addition to 
the methods and fields contained in the class.  We can identify the 
access levels of the methods, in addition to their parameter lists and 
return types. 
 
Class diagrams are also used to communicate the relationships 
between classes.  These relationships may be associative (Association) 
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or hierarchical (Inheritance, Aggregation or Composition).  Within the 
class diagram, we use various elements to indicate where a 
relationship exists, what type of relationship it is and any other 
information relevant to the relationship, such as the cardinality of an 
associative relationship. 

Diagram Elements and Syntax 
We use class diagrams to depict the structure and relationships of 
classes in our architecture.  Some examples of these are as follows: 
 
Basic Class Structure 

+GetName() : string
+SetName()

-age : int
-firstName : string
-lastName : string

Student

Basic class element

 
In this structure, we see that the class element is separated into 
components for the name, attributes, methods (operations) and 
responsibilities (not shown).  In class diagrams, attributes, operations 
and responsibilities are the most common features you’ll use to depict 
abstractions (classes).  Each class is named – the name of the class 
appearing in boldface followed by an underline (the first 
compartment).  The attributes of a class, if included, are below the 
name of the class in the next compartment.  The names of the 
attributes are preceded by symbols which denote their visibility 
(access level): 
+: public 
- : private 
#: protected    
 
The type of the attribute may also follow the name of the attribute, 
preceded by a colon (see examples above). 
 
In the next (separate) compartment is the list of operations (methods) 
of the class.  As above, each operation is preceded by the symbols 
denoting access level, and may be followed by its return type. 
 
The last compartment of a class element is used to communicate the 
responsibilities of the class. Class responsibilities are basically free-
form text. 
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Inheritance 

 
To depict inheritance relationships, the open arrow with the solid line 
is used.  The arrowhead is placed at the superclass, with the arrow 
pointing from subclass to superclass. 
 
Composition 

 
In a composition relationship, there is usually a rule which governs the 
validity of the container with respect to the contents.  Sometimes this 
rule has to do with the number and/or type of objects that are 
contained.  If this rule is violated, the relationship is void.  To depict 
this relationship, we use a solid diamond as an arrowhead.  The 
diamond is placed at the class that represents the container, i.e. the 
arrow is pointing away from the class representing the contents 
(aggregate). 
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Aggregation 

 
Aggregation and composition are quite similar, obviously.  In 
Aggregation, there are no constraints governing the validity of the 
relationship.  For example, we could have zero or more of the 
contained objects in our container – zero would be valid, as would any 
other number.  To show this, we use an open diamond as our 
arrowhead.  As above, the diamond is placed at the class that 
represents the container, i.e. the arrow is pointing away from the class 
representing the contents (aggregate). 
  
Association 

 
An associative relationship refers to a dependency between classes, 
the strength of which can vary.  In the above case, we’re depicting a 
“many to many” relationship, between Student objects and Account 
objects.  Each link between classes can include symbols to denote the 
cardinality (multiplicity) of the association.  Examples of these symbols 
are as follows: 
1 : Only 1 (could be any numeral) 
0..1 : 0 or at most 1 
1..1 : At most 1 
1..* : At least 1 
*..*   : Many to many 
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Interfaces 
As you create more complex architectures, you may want to explicitly 
communicate the separation of the interface from the implementation 
details.  In UML, you can use interface elements to communicate this 
separation.  Interface elements appear as follows: 

 
This diagram reflects that the account class implements the 
AccountManager interface.  A class implementing an interface may 
also be depicted as follows: 

 
 Note: classes may implement (realize) many interfaces. 
 

Object Diagrams 
Object diagrams show the static structure of the object, but they don’t 
stop there.  Objects exist at runtime, not at design time.  So, in 
addition to the structure of the object, object diagrams are used to 
communicate the behavior of the object and how objects interact with 
each other.  Each object’s behavior is based on the methods contained 
in that object.  Objects interact with each other by invoking (calling) 
the public methods that are defined in other objects.  The object 
diagram provides a visual representation of what methods are being 
called by which objects, depicting system behavior at runtime, though 
without definition of order (sequence) or time. 

Diagram Elements and Syntax 
Basic object diagram 

 
 
This simple diagram shows the structure of the object.  The name of 
the object is in the first compartment, followed by the attributes in the 
next.  Note, in object diagrams, the name of the object is underlined, 
unlike in class diagrams. 
  
Object Interaction 
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In this diagram, we’re depicting the interaction between two objects, 
one of class Student and the other of class Account. 
 

Component Diagrams 
A component is a stand-alone, (i.e. deployable), part of a system’s 
implementation.  A component can be looked at as a runtime 
“container”, comprised of the objects of various classes.  The 
component provides some functionality that is based on the 
functionality “contributed” by the included classes.  A component is 
also an element of a distributed system.  As our architecture becomes 
distributed, we find that we need some way to look at our architecture 
from the standpoint of which components are interacting with each 
other, i.e. at a higher level than that of individual classes and objects.  
This higher level view allows us to more quickly obtain information 
about our system than would be obtained otherwise. 

Diagram Elements and Syntax 
Basic Component 

Component1

 
Here we see the component element, showing the name of the 
component 
 
Component with Interface 

 
As with classes, components can also implement interfaces, as shown 
here 
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Component interaction 

 
This diagram expresses the interaction between two components, via 
Component2’s interface 
 
Depicting Components and Classes 
A component’s functionality is provided by its classes.  We can say a 
component is dependent on its classes.  To show this relationship, we 
can create a component diagram showing this dependency, as follows: 

  
 
Deployment Diagrams 
Many of the diagrams we discuss serve to help us visualize the 
structure and behavior of our software systems.  Deployment 
diagrams help us visualize the physical layout of our systems.  It 
shows the relationships between the software and hardware elements 
of the system.   
 
Deployment diagrams consist of nodes that reflect a unit of 
computation such as a piece of hardware.  The lines between nodes 
represent links that show communication pathways between nodes. 
Within each node of a deployment diagram are components (see 
component diagrams above).  
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Deployment diagrams are useful when you need to show how 
components in your system will be or are deployed.  This information 
is obviously different from the logical information reflected by many of 
the other UML diagrams we’ve seen. 

Diagram Elements and Syntax 
Basic Deployment Element 

 
In this example, we see the node element including the name 
 
Node Interaction 

 
 
Each of the lines between the nodes represents the physical 
communication (i.e. connection) between the nodes.  

Nodes and components 
Nodes are composed of components.  To show the dependency of the 
nodes to their constituent components, we can use a variation of the 
deployment diagram, as follows: 
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Sequence Diagrams 
A sequence diagram conveys the sequence of messages (method calls) 
for a group of objects, as those objects collaborate to satisfy some 
requirement of the system.  Another way of characterizing a sequence 
diagram is to say that it depicts the explicit sequence of methods calls 
for a group of objects as those objects collaborate to satisfy a use 
case.  
 
In a sequence diagram, there is an explicit start point and end point.  
These correspond to the start of the scenario and the end of the 
scenario.  As the scenario progresses, objects are recruited for their 
functionality via message passing (i.e. method calls).  The sequence 
diagram makes it easy to identify the individual steps taken, from one 
object to another. 
 
Because a sequence diagram explores the “path” through a number of 
objects to satisfy a use case, the sequence diagram is not intended to 
show all of the methods that are defined on each object in the 
scenario.  It serves only to highlight those methods that are explicitly 
called to satisfy the use case.  The focus of the sequence diagram is 
the “sequence” of the messages only.  It shows the flow of logic as we 
traverse through the scenario, which allows us to record and validate 
the logic. 
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Diagram Elements and Syntax  
Basic Sequence Diagram 

Object1 Object2 Object3 Object4

Message1()

Message2()

Message3()

Message4()

Message4()

Message2()

Message3()

Message1()

Object5Message4()

Object lifeline

Method call

Method return

Each object in the sequence is represented by the object element at 
the top of the diagram.  Extending down from each object is its lifeline, 
i.e. the line downward represents the object’s lifetime.  Each long 
rectangle that is positioned on the lifeline represents the “activation” 
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of the object, i.e. the time in which a method on the object is 
executing. 
Each message (i.e. method call) is represented by the arrows going 
from one object’s activation to another.  Each line implicitly represents 
the method’s call and return.  However, a method’s return can be 
explicitly denoted by using a dashed line in the opposite direction to 
the invocation.  This dashed line would be placed at the bottom of the 
object’s activation rectangle. 
 
Sequence diagrams can also depict asynchronous method calls 
(synchronous by default).  In the case of asynchronous calls, instead 
of a “full” arrowhead, a “half” arrowhead is used for each “half” of an 
asynchronous message.  
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Activity Diagrams 
An activity diagram is similar to flow charts, except they include the 
ability to model parallel behavior.  Activity diagrams are useful when 
depicting the behavior of multithreaded applications, or other complex 
processes. 

Diagram Elements and Syntax 
Basic activity diagram 

 
In the activity diagram, as in the State diagram, the starting point is 
the initial node, a filled in circle.  While not required, the presence of 
this node makes it easier to comprehend the diagram.  The filled circle 
with an enclosing circle signifies the ending point of the diagram. 
 
Between the starting and ending nodes in the diagram is where we 
find “activities”, “flows”, “forks” and “joins”.  An activity is something 
that occurs (an action).  When something occurs, that places our 
object in another state, during which something else occurs.  
Transitions between one action state and another is depicted by the 
arrows between states. 
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Sometimes, as a result of an occurrence, there are two “paths” that 
may be followed simultaneously, i.e. parallel activities.  The horizontal 
bar with one arrow coming toward it and two or more arrows going 
away to other action states indicates a fork, i.e., the start of parallel 
processing.  At the end of parallel processing, a join is executed.  The 
join is a horizontal bar with two or more arrows leading toward it, with 
one arrow leading away. 
 

Collaboration Diagrams 
Collaboration diagrams show the interaction of objects in an 
application, i.e. the message flow (method calling).  They provide a 
view of a collection of collaborating objects.  This view allows us to see 
the functionality provided by each object, aspects of the flow of logic 
between objects and also roles that objects can assume within their 
lifetimes. 
 
Unlike sequence diagrams, collaboration diagrams focus on the 
relationships between objects.  The name alone implies that we would 
use such diagrams to help us understand how a group of objects 
collaborates to accomplish some goal.    
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Diagram Elements and Syntax 
Basic Collaboration Diagram 

1:
 M

es
sa

g e
 1

1:
 M

es
sa

ge
1

 
In Collaboration diagrams, each rectangle represents an object.  The 
lines between the objects in the diagram are links that represent 
relationships (association, aggregation or composition) between 
objects.  The arrows indicate method calls and their respective 
directions.  The numbers associated with each arrow indicates the 
sequence in which the methods are called. 
 

State Diagrams 
As the methods defined for an object are invoked, the values of the 
object’s internal data might change.  Each of these changes, in 
response to a method call, constitutes a different state that the object 
is in.  Throughout an object’s lifetime, it may inhabit many states, with 
the change from one state to another being a “transition”.   
 
As designers, we may want to focus on an object and look at what it 
takes to move from one state to the next, what the values of the data 
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are in various states and how the object interacts with other objects in 
our system as we travel from state to state.  The UML diagram that 
allows us to do this most easily is the UML State diagram.  With the 
state diagram, we use UML elements to depict the various states of 
the object, as well as the state transitions.  A state diagram combines 
states and method calls in order to depict all possible object states 
during its lifetime.  The state diagram will help us visualize how the 
object responds to invocations of its methods. 
 

Diagram Elements and Syntax 
Basic State Element 

 
Each “state” is represented by this element.  The name of the state is 
included within. 
 
State Transitions 
As the object progresses through its lifetime, its state changes.  This 
transition from state to state is represented by lines between states, 
as shown below: 

 
Each state diagram begins with the object in an initial state, as 
denoted by a solid circle.  Each diagram also ends with the object in a 
final state, denoted by a solid circle, enclosed within another circle. 
 

Use Case Diagrams74 
Use case diagrams provide a generalized view of how a system will be 
used.  Each use case represents a specific usage scenario that is a 
sequence of interactions between user and system, the goal being the 
satisfaction of some requirement.  The collection of use cases would 
thus provide all of the requirements for a system.  One of the benefits 

                                                 
74 For a more complete discussion of use cases, see Appendix 1 



 285  Object-Oriented Analysis and Design 

X52.9267-001  Not for commercial use  

of use case diagrams is that it allows anyone to see a visual 
representation of the intended usage and functionality of the system. 
 

Package Diagrams 
A package is a fundamentally group of related classes.  The grouping 
is used to organize classes into something more manageable.  The 
relationship between classes in a package is not only limited to the 
class relationships we’ve seen before, i.e. Association, Inheritance, 
Aggregation or Composition.  The “relationship” that exists between 
classes in a package may be simply that they share responsibility for 
providing some aspect of a system’s functionality.  For example, you 
could create a package of utility classes.  Each class provides some 
“utility” functionality that is used in one or more places in the system.  
Another perspective is that a package is a logical grouping of classes, 
i.e. there is some “logic” to why they’re grouped together. 
 
Many languages, such as Java and the Microsoft .Net languages 
extensively use packages to organize classes.  When the functionality 
that exists in one or more classes in a package is required, the 
package is utilized.  In so doing, the class name is prefaced by the 
package name. 
 
A package diagram is a diagram that shows groups of classes and the 
dependencies between them.  A dependency between packages 
implies that there is a dependency between two or more classes in 
each package. 

Diagram Elements and Syntax 
Basic Package Diagram 

 
This diagram shows the package element, including the name. 
 
Package Interaction 

Package1 Package2

 
As we mentioned before, if one class in a package is dependent on a 
class in another package, then the first package is dependent on the 
second package.  The example above shows this relationship between 
Package1 and Package2. 
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Packages and Classes 
Packages represent a group of classes.  This relationship between 
packages and classes can be represented by drawing the contained 
class elements within the package element. 
 

Subsystems  
In general terms, the system is the solution you’re designing.  
Depending on the complexity of the system, a system may be viewed 
as being a collection of sub-systems.   
 
UML provides a set of elements that we can use to depict as system as 
a group of subsystems.  Diagrammatically then, a system is depicted 
as an aggregation of subsystems, using the same aggregation 
elements as with class diagrams.          

Diagram Elements and Syntax 
Basic Subsystem  

 
 
As you can see, the subsystem element is very similar to the package 
element.  The difference is that the subsystem element contains a 
stereotype, which is the text in the diagram between the << and >> 
symbols.  The stereotype is used to indicate whether the element 
represents the system (as a whole) or a subsystem. 
 
System/Subsystem Relationship 
Systems are comprised of subsystems.  This relationship is 
represented as a composition of subsystems, using the composition 
relationship element as described earlier (class diagrams). 
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Appendix 3 
 
Object-Oriented GUI Design Elements 
Graphical User Interfaces (GUI’s) have been around for many years 
now.  They were brought into the mainstream by Apple Computer with 
its Macintosh line and further popularized by Microsoft’s Windows 
environment.   
 
GUI frameworks have also become popular.  These frameworks are 
presented as part of an Integrated Development Environment (IDE), 
which allows users to write code, debug and build software.  There are 
many commercially available GUI frameworks in IDE’s.  Some of the 
more popular are Microsoft’s Visual Studio for Windows, X Windows for 
Unix, CodeWarrior and JBuilder for Java.  These frameworks exist to 
simplify the construction of a user interface for an application. 
 
A GUI framework consists of various abstractions representing tools 
used in building user interfaces.  These tools consist of text boxes, 
scroll bars, buttons, sliders, checkboxes etc., many of which are 
displayed in the two figures following.  Each abstraction has various 
operations and attributes defined on it based on the appropriate 
semantics.  For example, the value of a checkbox would not be the 
same as the value of a text box.  A checkbox may have two or three 
states, depending on implementation.  Those states would be on, off, 
indeterminate (or true, false, indeterminate).  The value of a textbox 
would be the current contents of that textbox.  Each element of a GUI 
is an object, i.e. an instance of the class in which various operations 
and attributes are defined. 
 
GUI frameworks allow you to “draw” elements (or controls) directly 
onto windows, specify windows (dialog windows, etc.), define menus 
and menu items, etc.  Typically, this graphical construction generates 
the code corresponding to the GUI elements.  This is far simpler than 
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trying to construct and place these elements from the bottom up.  In 
many GUI frameworks the elements share a common superclass 
element, such as a superclass representing a generic control.  In this 
way, the framework and developers can exploit Polymorphism in the 
workings of the framework and in the development of applications. 
 
There are various mechanisms available in GUI frameworks.  One of 
the most important is the event handling mechanism.  The elements of 
a GUI respond to events.  Events are triggered by a variety of sources.  
Some of these are as follows: 
 

• Mouse events 
• Keyboard events 
• Menu events 
• Window activation and deactivation events 
• Window resizing events 
• Initialize and terminate events 

 
This event-handling mechanism allows us to use the mouse to 
navigate among the various controls, as each movement, click, drag, 
etc., translates to an event.  Each event is then handled as 
appropriate, based on the context in which the event occurred.   
 
GUI frameworks, as part of their overall capabilities, give developers 
the opportunity to implement custom code in the event-handling 
routines.  It should be noted that GUI frameworks typically allow 
developers to add custom code to handlers for events that are already 
defined.  You are typically not allowed to define new events or 
handlers.  Each control will have a set of events appropriate for it.  For 
example, a text box will have handlers for events that buttons will not 
have.   
 
The following pages show some of the more common GUI design 
elements, as found in the more popular IDE’s. 
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Option1

Check 1 Check box

Radio button

List box

Combo box

Vertical Scroll Bar

Text box

Group box

Tab control
Tab

 
 

Fig A2.1 Some GUI elements 
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OK

Spin buttoin

Button

Toolbar buttons

Grid

Progress bar

Progress bar

Mouse pointers

Slider

 
 

Fig A2.2 Some more GUI elements 
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Fig A2.3 Simple Windows application  
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Glossary 
 
Analysis 
A phase of the overall software development process (lifecycle) in 
which high-level models of the system (based on the system 
requirements) are created. These models are built with an 
understanding of the functionality the system is to provide, again 
based on the system requirements. 
  
Design 
A phase of the overall software development process (lifecycle) in 
which the high-level models from the Analysis are made more concrete 
by factoring in the environment, constraints, non-functional 
requirements, cost, time-to-market, etc. The output of Design is a set 
of models that are the basis for writing code. 
  
Procedural Languages 
Computer languages in which problems to be solved by a computer 
are broken into more manageable pieces and each piece is solved with 
a unit of code. 
  
Hierarchical Decomposition 
Also called “algorithmic decomposition,” hierarchical decomposition is 
the method by which procedural languages break complex problems 
into manageable pieces. Hierarchical decomposition is the cornerstone 
of top-down design methodology in Computer Science, and its advent 
allowed complex problems (some orders of magnitude greater than 
those previously undertaken and solved) to be dealt with more 
routinely. 
  
Abstract Data Types 
User-defined types, e.g. structs in C, records in Pascal, etc. They 
allowed programmers to create types that were abstractions of 
elements of the problems they were trying to solve. These abstractions 
further allowed the aggregation of primitive types (i.e. integers, 
characters, etc.) in a way that was more meaningful to human 
designers and coders. They also resulted in more readable and 
organized code.  
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Classes 
Blueprints for object. 
 
Objects 
Instances of a class.  They may also be viewed as the members of a 
class. 
                       
Attributes 
An object’s data are its attributes. 
 
Methods 
The means to manipulate an object’s data.  Methods provide the 
functionality of the object. 
  
Abstraction 
A description of a system that does not focus on all details, only on 
those that are relevant, like a simple schematic drawing. 
  
Hierarchy 
A hierarchy is an ordering of items.  Inheritance, in which the “is a 
kind of” relationship is examined, is one way to develop a hierarchy. 
  
Encapsulation (information hiding)  
The ability to separate the interface of a class from the implementation 
  
Object-Oriented Decompsition  
The ability to model an operational system based on cooperating 
objects, which is closer to reality that the earlier hierarchical 
decomposition would allow. 
  
Persistence  
Storing the value of an object for later use. An object’s class and 
current state may be saved for later use. 
  
Concurrency 
Ability of objects from the same class to have simultaneous existence. 
  
Typing 
Classifying variables by the kind of data they hold (integers, strings, 
etc.). 
  
Object-Oriented Analysis  
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An analysis of the system requirements that is based on object-
oriented thinking. This is an analysis based on the object-oriented 
decomposition, as opposed to the top-down hierarchical decomposition 
of structured analysis. 
  
Object-Oriented Design  
Design that is also based on object-oriented thinking. In the design 
phase, we are concerned with making the models developed in the 
analysis phase more concrete and refined, readying them for 
development. 
  
Object-Oriented Programming  
The development of programming code also based on object-oriented 
thinking, using an object-oriented language and environment (C++, 
Java etc.). 
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