

An Introduction to
Object-Oriented Analysis and

Design

Andrew Moncrieffe

X52.9267
(Copyright 2001 – 2006 Andrew Moncrieffe
Not For Commercial Use

Object-Oriented Analysis and Design 2

X52.9267-001 Not for Commercial Use

TABLE OF CONTENTS

Preface..9
Intended Audience .. 9

How the Book is Organized.. 9

Trademarks ... 10

Comments .. 11

Introduction ... 12
History.. 13

Chapter 1 .. 17
Introduction to Object-Oriented Analysis, Design and Programming.................. 17

Evolution of Software Engineering ... 17
Procedural Language Issues.. 18
Object Oriented Development .. 19
Comparison of Procedural and Object-Oriented Methods and Languages 20

Object-Oriented Analysis, Design and Programming Explained........................... 21
Analysis... 21
Design ... 23
Object-Oriented Capabilities and Benefits ... 24
Basic Concepts of Object-Oriented Development.. 24

Sample Project .. 26

Chapter Summary .. 27

Exercises... 28

Chapter 2: Classes and Objects... 29
Classes and Objects... 29

The Meaning of the Word “class” .. 29
Identification of Typical Classes .. 30
Class Semantics .. 32
So, What is an Object?.. 32
Objects as Class Instances .. 33
Identification of Typical Objects .. 33
Object Features ... 33

What Makes Languages and Methods Object-Oriented?....................................... 34

Procedural and Object-Oriented Language Comparisons Revisited 34

Main elements of OO paradigm .. 34
Abstraction.. 35
Encapsulation.. 38
Hierarchical Relationships .. 41
Modularity... 46

 3 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Persistence... 48

Benefits of OO Development.. 50

Interfacing with Non-Object-Oriented Systems .. 51

Identifying Classes .. 51
Behavior Analysis... 52
Domain Analysis... 52
Use-Case Analysis .. 53
Informal English ... 54
Structured Analysis... 54

Finding Key Abstractions... 54
CRC Cards .. 55

Sample Project .. 56
Requirements .. 56

Chapter Summary .. 58

Exercises... 59

Chapter 3 .. 60
Class Structure .. 60

“Design-time” and “run-time” Defined .. 60
What is Class Structure? ... 61

Abstract Classes .. 64

Class and Object Interactions.. 66
How Classes Determine the Behavior of Objects... 67

Introduction to Class Modeling using UML... 67
History of UML .. 68
UML Notation... 68
Benefits of Class Modeling... 71
Modeling Activities .. 72

Sample Project .. 72
Analysis... 72

Chapter Summary .. 79

Exercises... 80

Chapter 4 .. 81
Class Relationships and Interactions .. 81

Class Hierarchies .. 81
Class Associations .. 89
Which Relationship do we Choose, When?.. 91

Interfaces vs. Implementation.. 92
What is the Interface of a Class?... 92
Implementing a Class’ Functionality .. 92

Object-Oriented Analysis and Design 4

X52.9267-001 Not for Commercial Use

Encapsulation and Information Hiding... 93

Sample Project .. 96

Chapter Summary .. 103

Exercises... 104

Chapter 5 .. 105
Object Structure and Relationships .. 105

What is an Object? .. 105
Structure of an Object ... 105
Instance Fields .. 106
Class Fields ... 106
Methods... 107

Object Initialization .. 108
Constructor Usage... 109

Object De-initialization .. 110

Objects and Access Levels.. 111

Class-Object Relationships .. 111

Objects and Inheritance ... 111
Subclass Initialization ... 113

Object Interactions and Relationships.. 114
Modeling Object Behavior at Run-Time .. 114
Static vs. Dynamic Modeling.. 122

Sample Project .. 123

Chapter Summary .. 129

Exercises... 130

Chapter 6 .. 131
Designing with Classes and Objects .. 131

Overview... 131
Design Guidelines... 132
Abstraction.. 134
Refining Class Selections ... 134
Design Goals... 143
Additional Design Factors .. 145
Design Elements ... 148

Sample Project .. 153
Constructors .. 159
Destructors .. 163
Checkpoint .. 163
Persistence and Data Management ... 169
Student-Related Data .. 174

 5 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

System Functionality and Report Requirements... 179
Implementing Data Management Methods... 181
Class Details Revisited ... 182
User Interface.. 186
Summary ... 201

Chapter Summary .. 205

Exercises... 206

Chapter 7 .. 207
System Development Processes.. 207

What is a Software Development Process?... 207

The Software Development Process .. 207
Conceptualization and Requirements Gathering .. 208
Analysis... 209
Design ... 215
Additional Development Phases ... 219
Why do we Need a Process?... 221

Chapter Summary .. 225

Exercises... 226

Chapter 8 .. 227
Creating and Using Object Oriented Software Interfaces.................................... 227

Interfaces vs. Implementation.. 228

Applications in OO Design... 228

Polymorphic Behavior and Interfaces .. 230

Interfaces in UML... 231

Support in OO Development.. 232

Interfaces in Distributed Systems.. 233

Sample Project .. 235

Chapter Summary .. 237

Exercises... 238

Chapter 9 .. 239
Object-Oriented Software Architecture ... 239

What is Software Architecture? .. 239

Object-Oriented Architectural Elements ... 240

Designing with Components .. 241
Using Components.. 242
Components and Distributed Systems .. 244

Object-Oriented Analysis and Design 6

X52.9267-001 Not for Commercial Use

Components in UML .. 246

Sample Project .. 249
Architecture... 250

Chapter Summary .. 253

Exercises... 254

Chapter 10... 255
Object-Oriented Methodology in the Industry .. 255

Requirements Gathering ... 256
Code Reuse ... 257
Components and Reuse... 259
Code Maintenance .. 259
Components and Maintainability.. 260

Object-Oriented Technology at Work .. 261
Rational Unified Process... 261
Rational Rose .. 262
Object-Oriented Databases ... 262

Chapter Summary .. 264

Appendix 1... 265
Use Cases.. 265

Use Case Models.. 266

Appendix 2... 268
Brief UML Reference ... 268

Introduction... 268
UML Diagram Types.. 270

Appendix 3... 287
Object-Oriented GUI Design Elements .. 287

Glossary .. 292

Bibliography... 295

Index .. 297

 7 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

TABLE OF FIGURES

Fig 1.1 Early computer programming .. 14
Fig 1.2 Shared memory access in typical procedural languages 18
Fig 1.3 Memory access with objects ... 19
Fig 2.1 Class "Computers" .. 31
Fig 2.2 Class “Modes of Transportation” ... 32
Fig 2.3 Abstraction... 36
Fig 2.4 Abstraction... 37
Fig 2.5 Abstraction... 38
Fig 2.6 Encapsulation ... 41
Fig 2.7 Inheritance .. 42
Fig 2.8 Inheritance .. 43
Fig 2.9 Inheritance .. 43
Fig 2.10 Inheritance.. 44
Fig 2.11 Composition .. 46
Fig 2.12 Modularity.. 48
Fig 2.13 Options for saving a document ... 50
Fig 3.1 UML Notation .. 69
Fig 3.3 UML Class Diagram .. 71
Fig 4.1 UML Class Diagram .. 84
Fig 4.2 Associations... 91
Fig 4.2 Student Diagram ... 97
Fig 4.3 Student Diagram ... 98
Fig 5.1 UML Sequence Diagram ... 116
Fig 5.2 Annotated UML Collaboration Diagram .. 119
Fig 6.1 Database Abstraction .. 151
Fig 6.2 Parameterized class ... 153
Fig 6.1 Student class relationships ... 168
Fig 6.2 System class relationships .. 169
Fig 6.3 Entity-Relationship diagram for student data................................ 173
Fig 6.4 Additional entities ... 174
Fig 6.5 Student-related focus.. 184
Fig 6.6 System-related focus .. 185
Fig 6.7 Main menu ... 188
Fig 6.8 File sub-menu... 189
Fig 6.9 Adding a new student ... 190
Fig 6.10 Adding a Typical student ... 191
Fig 6.11 Adding a Faculty student... 192
Fig 6.10 Adding a Transfer student .. 193
Fig 6.11 Find Student menu item .. 194
Fig 6.12 Search criteria ... 195

Object-Oriented Analysis and Design 8

X52.9267-001 Not for Commercial Use

Fig 6.13 Search Results ... 196
Fig 6.14 View student details .. 197
Fig 6.16 Tools menu ... 199
Fig 6.16 Help menu ... 200
Fig 7.1 Analysis ... 214
Fig 7.2 Design.. 218
Fig 7.3 Implementation ... 220
Fig 7.1 Task Sheet ... 223
Fig 7.2 Gantt chart .. 224
Fig 8.1 UML... 231
Fig 8.2 Interface illustration .. 232
Fig 8.3 CORBA IDL example .. 235
Fig 9.1 UML components ... 246
Fig 9.2 Component interactions ... 247
Fig 9.3 Component interactions ... 247
Fig 9.4 Component interfaces ... 248
Fig 9.5 Multiple interfaces... 248
Fig A1.1 Use case example .. 266
Fig A2.1 Some GUI elements .. 289
Fig A2.2 Some more GUI elements .. 290
Fig A2.3 Simple Windows application .. 291

 9 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Preface

Intended Audience
This book is intended for students seeking an introduction to the
object-oriented way of thinking and how that is achieved through
analysis and design activities. It is not mandatory that you have prior
experience programming in an object-oriented language such as C++
or Java. It is expected that you have some familiarity with high-level
languages, as throughout the book, many references are made to
familiar high-level language constructs. As such, familiarity with
languages such as BASIC, C, COBOL, FORTRAN, PL/1, Pascal, etc., is
sufficient. However, any familiarity with object-oriented languages
should reduce your learning curve.

How the Book is Organized
The basic concepts of object-oriented analysis and design are covered
in Chapters 1 to 6. Chapters 7 to 9 introduce more advanced concepts
such as the development process, object-oriented architecture and
distributed computing. Throughout the book, UML is used for class
and object modeling.

 Chapter 1 contains an introduction to object-oriented concepts
starting with tracing the evolutionary steps of software engineering.
Chapters 2 to 5 introduce the concepts of classes and objects,
progressing through discussions of more complex relationships. An
example development project is introduced in Chapter 1. At the end
of each of Chapters 2 to 6, the Chapter’s material is applied to the
example, evolving it from the requirements through analysis and
design. Here, the focus is on the applying the concepts introduced in
each chapter. Chapter 6 discusses the elements of design and the
evaluation of design. This chapter also discusses “connecting” user
interfaces to object models. At the end of the chapter, these are

Object-Oriented Analysis and Design 10

X52.9267-001 Not for Commercial Use

applied to the example. While not a book on programming, where
appropriate, there are examples in both C++ and Java, in addition to
pseudocode.

In Chapter 7, we take all the activities done so far in the previous
chapters and formalize them into an overall lifecycle partitioned into
phases. The discussion is focused on which activities are allocated to
which phases and why.

Chapter 8 discusses interfaces, as “independent” abstract constructs,
not just as a description of the public operations defined in an
abstraction. Interfaces, as used in distributed computing are reviewed
also. The chapter ends with the definition of interfaces in UML for the
example.

In Chapter 9, we discuss software architecture and distributed
systems. The chapter provides a definition of architecture and
discusses various architectures. Component architectures are also
discussed. At the end of the chapter, we evolve our example’s
architecture to be component based.

Chapter 10 discusses how the attributes of the object-oriented
methodology address some of the issues facing IT managers. It ends
with a brief discussion of some products available.

Trademarks
Various products of various companies are mentioned throughout the
book. These names are trademarks of the companies, as follows:

Java is a trademark of Sun Microsystems, Inc. in the U.S. and other
countries. The Java technology is owned and exclusively licensed by
Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, Project and the Windows logo are
trademarks of Microsoft Corporation in the United States, other
countries or both.

Rational Unified Process and Rational Rose are trademarks of Rational
Software Inc. in the U.S. and worldwide.

Other company, product and service names may be trademarks or
service marks of others.

 11 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Comments
Comments, criticisms, suggestions or any other feedback is welcomed.
Please send email to the address below:

mracmny@gmail.com

 Copyright Andrew Moncrieffe 2001-2005

Object-Oriented Analysis and Design 12

X52.9267-001 Not for Commercial Use

Introduction

Though not a recent innovation strictly speaking, object-oriented
development is now enjoying immense popularity. This popularity has
been bolstered by the availability and maturity of object-oriented tools
such as languages and environments. This popularity has also been
aided by the presence of the World Wide Web.

At the same time, more and more corporations are faced with the
challenging problem of integrating diverse platforms, as they seek to
gather critical information for client and decision support systems. As
a result, we focus not only on the elements of the object-oriented
methodology, but also on how to integrate non-object-oriented
systems into object-oriented development efforts.

The use of the World Wide Web (and related technologies) as a
delivery medium for computing has caused a major shift in how
applications are designed and deployed. In addition to developing
object-oriented systems, more and more corporations are developing
distributed systems as well. Many products have come to market,
based on this paradigm shift. It is important then, to extend the
discussion of object-oriented development to include component based
development.

Even with all of these advancements, the old adage still holds true: in
order to know where you’re going, you must know where you’ve been.
With that in mind, a brief exploration of the evolution of software
engineering is in order, to give some insight into why object-oriented
development evolved (and from what) in the first place.

In our world today, we all want everything yesterday. Development
projects are much the same. In many cases, we are faced with
management and market pressure to deliver systems ASAP, which
means yesterday. Regardless, we need to develop sufficient

 13 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

understanding of the fundamentals before we apply to our analysis
and design efforts. To that end, we discuss in some detail, the
formalities and theories behind the activities required to develop
object-oriented software and follow that discussion with application to
a class example. The “formality” will provide a basis that is somewhat
portable. Languages that support object-oriented development may
have different syntaxes, but the fundamentals should apply, regardless
of language.

In a similar vein, it is important to make sure we agree on the
semantics of the words we use. Many people refer to systems as
object-oriented. However, as we will see, not all “object-oriented”
systems are indeed object-oriented. We examine what it means to be
object-oriented. There are similar issues with the terms “analysis” and
“design”. In some cases, we’ve used those terms for years, without
stopping to consider exactly what we’re doing in each case. As before,
we need to have the same understanding of the meanings of the
words we’re using, in order to prevent ambiguity and
misunderstandings.

As with other paradigms, productivity has been and continues to be an
issue. One of the requirements for acceptance is how quickly
developers et al “get up to speed”.

Like anything else, to obtain the most from object-oriented paradigm
and methodologies, there must be a basic understanding of the
concepts. This necessitates viewing problem-solving in a completely
different way than one might be used to. In some cases, it will require
learning completely new languages, in addition to the new concepts.

History
To put all of this in the proper context, a brief history lesson is in
order. In the beginning, there was the mainframe, and it was good.
It was also huge, requiring its own room, complete with specific
cooling mechanisms. In one sense, programmers were at the mercy
of the mainframe, as at this time, the interactions between
programmers and the mainframe were based on the language of the
mainframe, i.e. zeroes and ones. Imagine how difficult it must have
been to create a trivial program, let alone anything complicated. The
I/O devices were rudimentary at best. Computer programs involved
directly submitting programming instructions via switches on a
rudimentary panel (or panels). This was the interface to the computer
– no mice and keyboards. The programs were essentially setting or

Object-Oriented Analysis and Design 14

X52.9267-001 Not for Commercial Use

re-setting switches on or off, translating into commands for the
computer. Of course, we now have the advantage of decades of
improvements on computing, but this is how it was done in the
beginning. Just think of how “interesting” it must have been to code
and debug a program back then, with no monitors, keyboards, mice,
IDE’s (Integrated Development Environment) etc.

Fig 1.1 Early computer programming

Though primitive and obviously tedious, this method allowed
programmers to program the computer to solve problems. Prior to
this, they were not able to employ and leverage computing solutions.
It is also clear that with this level of sophistication, the computer
programming methods were only suitable for solving relatively simple
problems. As you can imagine, this method would not (and did not)
scale well as problems became more complex. Thus, over time, the
industry realized that another paradigm, or way of thinking, was
needed, because the problems that were being presented were
becoming increasingly complex, outstripping the capabilities of the
solutions (and programs).

This led to the introduction of first-generation languages (1GL), such
as COBOL1. These languages provided a more easily adapted (for
humans anyway) interface between humans and the computer. This
interface was the high-level, text based language. This also meant the
advent of compilers and interpreters. These were programs that
would accept text files with each line having an English-like structure
and translate it into binary code, which the computers understood.
This allowed for an order of magnitude leap forward in terms of the
complexity of the problems that could now have computing solutions.
High-level languages also gave programmers the ability to declare

1 Common Business Oriented Language

 15 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

variables. A variable represents a location in memory. High-level
languages allowed programmers to refer to locations in memory by
symbolic names. This made it easier to manipulate memory using
meaningful names and not being limited to manipulating memory
addresses directly all the time. We take these things for granted as it
is commonplace now. At the time, it was a significant leap forward.

High-level languages evolved to second-generation languages (2GL),
which added the ability to subdivide programs into subroutines or
procedures. This was the advent of procedural languages. The arrival
of the subroutine meant that “divide and conquer” could be applied to
larger problems, some of which may have been prohibitively large
before. This went a long way with regard to the complexity of
problems that could now be effectively solved. These constructs
allowed hierarchical decomposition of problems into more manageable
components, each of which could be further subdivided.

Hierarchical decomposition is also termed “algorithmic decomposition”.
It is the cornerstone of the top-down design methodology that so
many of us were taught in our beginning courses in Computer Science.
With hierarchical decomposition, complex problems, orders of
magnitude greater than undertaken (and solved) previously, were
being dealt with, somewhat more routinely. This became more
commonplace as the procedural paradigm evolved further. Another
effect of this division of labor was the utilization of modularity in
computing. Sections of a program’s code (subprograms) could be
used, and re-used.

Further evolution saw the progression to third-generation (3GL) and
fourth-generation (4GL) languages. As they evolved, high-level
languages provided other constructs, such as data types. A language
defined a set of types that were considered primitive because they
were inherently supported by the language. This meant that
programmers could choose individual types that were appropriate for
their programming efforts. They could decide that they needed
integer numbers only for some value and once this declaration was
made, the compiler would take care of the amount of memory that
needed to be allocated for that particular type. This freed the
programmers from such tasks as well. Languages also allowed users
to create their own data types by combining and/or renaming the
primitive types. By utilizing abstract data types (ADT’s), users are
able to define types that were abstractions of elements of the
problems they were trying to solve. The programmers could use
language elements from the requirements, making their code easier to

Object-Oriented Analysis and Design 16

X52.9267-001 Not for Commercial Use

understand and the solutions easier to conceptualize. These allowed
the aggregation of primitive types (i.e. integers, characters, etc.) in a
way that was more meaningful to human designers and coders. It
also allowed for more readable and organized code. Examples of user-
defined types are structs in C, records in Pascal, etc. This progression
also saw the appearance of support for modular programming and
data manipulation.

So, if procedural programming was so great, why was there a new
paradigm introduced, i.e. object oriented development? Why was this
new paradigm invented in the first place? What problems, existing or
perceived, were the inventors and designers attempting to solve?

 17 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 1

Introduction to Object-Oriented
Analysis, Design and Programming
Object-oriented analysis, design and programming evolved to address
shortcomings in other methods of software development. As more
complicated problems were undertaken, the early methods of software
development were proven to be insufficient. The object-oriented way
of thinking evolved to help in this area.

This chapter introduces the fundamental concepts of object-oriented
analysis (OOA), design (OOD) and programming (OOP). It also
describes how object oriented languages differ from procedural
languages.

The text is titled “Object Oriented Analysis and Design”. Our main
concern in this chapter will be the concepts, tools and guidelines of
object-oriented methodology. We will explore the analysis and design
activities as they relate to the overall object-oriented system
development lifecycle. However, in order to do this, we must establish
the context in which we will interpret various terminologies. So, to
paraphrase, in order to know where we’re going, we have to know
where we’ve been.

Evolution of Software Engineering
Computers and Computer Science has now been around for a while.
We utilize various tools and techniques on a daily basis, taking some
things for granted. In order to put object-oriented development in the
proper perspective, we should look briefly at what led to the
development of object-oriented approaches.

Object-Oriented Analysis and Design 18

X52.9267-001 Not for Commercial Use

Procedural Language Issues
Here are some general issues with procedural languages. Please note:
these are not absolute, and are thus open to dispute. Why? The
answer is procedural programmers have attempted, with varying
levels of success, to deal with these issues, within the constraints of
the particular language, environment and approach. Some have been
more successful than others due to the particular language and the
“best practices” that have been invented to reduce some of these
issues. We will highlight three of these, as follows.

1. Programs (consisting of subroutines and modules) have

unrestricted access to shared (common) data. Procedural
languages have a separation between data and the procedures
that manipulate the data. So encapsulation, with regard to data,
(i.e. the concept of “private” data) is not robust for procedural
languages. Even if there is data in a record (in Pascal) or a
struct (in C), the data in these structures is publicly accessible,
meaning it can be assigned to any other variable of the
appropriate type and similarly, any variable of the appropriate
type may be assigned to it. There is no access restriction on this
data, even though it is obviously important to the overall
structure. In addition, the data could be remotely manipulated
(via pointers, etc.).

Memory
(Non-protected, available to all subroutines)

SubRoutine A SubRoutine B SubRoutine C

Memory interactions

Fig 1.2 Shared memory access in typical procedural languages

2. Code reuse, except for copying the code of particular procedures
and modules, was largely un-realized.

 19 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

3. Programmers were unable to apply concepts based on elements
present in real life, such as leveraging the relationship
hierarchies between items, whether data elements or algorithms.
They could create “static” types to represent items in the real
world, but that’s where it stopped.

Memory
(data)

SubRoutine A
.
.

SubRoutine Z

Object 1

. . .

Memory
(data)

SubRoutine A
.
.

SubRoutine Z

Object 1

Memory
(data)

SubRoutine A
.
.

SubRoutine Z

Object 1

Fig 1.3 Memory access with objects

Object Oriented Development
Object-oriented development has been around since the 1960’s.
Object-oriented languages are not new. The concept of the “object”
was first introduced in Simula67. Simula was developed for use in
creating simulations of real-world systems. Many of these systems
were highly complicated, involving many moving parts. Simula
introduced programmers to objects and classes. This makes Simula
very important in our current discussion. Objects in Simula were
allowed to have their own behavior and data its objects represented
real (i.e. physical) objects.

Object-oriented development has recently become very popular in IT
shops. In fact, this approach has probably become more widely
adopted due to its close association with Web development (primarily
due to Java being object-oriented).

Why has there been this (relatively) slow adoption? There are many
reasons, a few of which are as follows: There’s a significant amount of
existing and fully operational software that is not based on object-
oriented development methodologies or use object-oriented
languages. This software is also, in many cases, absolutely mission-

Object-Oriented Analysis and Design 20

X52.9267-001 Not for Commercial Use

critical, in addition to relatively reliable. In addition, there’s much
more available expertise and familiarity with procedural methods and
languages. This is related to the point above. We also have to factor
in organization’s reluctance to change. This change sometimes
involves, among other things, significant retraining/learning curve of
new paradigm for existing resources and management. This is
compounded by the opportunities for misunderstanding that exist
regarding object-oriented methodologies.

Comparison of Procedural and Object-
Oriented Methods and Languages
Smalltalk appeared after Simula. Smalltalk came along in the 1970’s.
It is a pure object-oriented language as every facet of the language
uses objects. For example, even types that are primitives (non-
object-oriented) in other languages, are represented by objects in
Smalltalk. As a result, it is impossible to write a program in Smalltalk
that is not object-oriented.

C++ was developed after Smalltalk. Although Smalltalk existed before
C++, C++ is credited as being the first mainstream object-oriented
language. C++ maintains backward compatibility with C.
Unfortunately this means, it is possible to write non-object-oriented
C++ code. As a result, while C++ does provide native object-oriented
constructs in the language, it is not a pure object-oriented language.

Java (from Sun Microsystems) was originally designed for consumer
electronics such as set-top boxes. At its origin, it was called Oak. Oak
was not a commercial success for Sun. Oak was based on C++ to the
extent that it kept the most important aspects of that language and
discarded the most troublesome. It was also designed with portability
and security in mind. As a result, pointers (among other items) are
not offered in Java. With the advent of the World-Wide Web, Sun
renamed Oak Java and created the HotJava browser. Java 1.0 was
officially released in 1996. Some in the industry argue that since Java
has non-object oriented primitive types, it is not a pure object-
oriented language either.

In addition to these, Microsoft’s suite of object-oriented development
languages now includes Visual Basic.Net and C#, both of which
provide object-oriented features.

 21 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Object-Oriented Analysis, Design and
Programming Explained
Now that we have an understanding of the “why”, let’s go further and
look at some specific terminologies. In this text, we will discuss
object-oriented analysis, design and programming. Let’s look at each
one individually.

Analysis
What is meant by Analysis? Analysis is one of the elements, i.e.
phases of an overall software development process (lifecycle). In
Analysis, we create the high-level models of the system, based on
requirements. These models are based on an understanding of what
functionality the system is to provide. From these requirements, we
are expected to develop a system that provides all of the necessary
functionality. Indeed, we are expected to produce a system that
meets the users’ expectations of more than just functionality.

The analysis effort involves taking functional requirements and
developing a depiction (model) of the system. For object-oriented
development efforts, this means preparing an object-oriented
decomposition that satisfies the requirements. The activities here help
transform the requirements of the system into a design that can be
realized by software.

Strictly speaking, in Analysis, we are not concerned with
implementation details, i.e. how the system will be implemented.
Rather, in Analysis, we need to focus on the functional aspects of a
system, i.e. the information conveyed by the functional requirements.
As we will see, functional requirements are not the only requirements
that may exist for a system.

In Analysis, our goal is to “digest” the requirements and produce a set
of documentation on which to base the design. Analysis
documentation reflecting the functional aspects of the system,
provides a static view of the system (more on this later). The
activities of analysis help transform the requirements of the system
into a design that can be realized by software. The models of analysis
are at a level of abstraction above the physical implementation of the
system. The level of abstraction is such that the models could be
applied equally well to many different platforms and architectures.
Analysis ignores the architectural constraints of the system. The
purpose of Analysis is to ensure that some aspect of the system

Object-Oriented Analysis and Design 22

X52.9267-001 Not for Commercial Use

satisfies each functional requirement. For object-oriented analysis,
this documentation will include class diagrams, which show the object-
oriented decomposition.

Requirements
A requirement is a description of a feature of a system, with systems
typically having many features. An example of a requirement is a
description of the functionality to be provided by the system
(functional requirements). Another example is a description of the
constraints under which the system must operate (non-functional
requirements).

In general, a system’s requirements are the set of documentation (of
one sort of another) that sufficiently specifies the functionality and
operations of the system. Requirements may be grouped into two
categories, functional and non-functional requirements.

Functional Requirements
Functional requirements are the most popular, by far. At some point
or another, it is very likely that we have received functional
requirements2. Indeed, some of us, at one point or another, may have
created functional requirements as well.

Functional requirements describe the actions of the system, i.e. the
functionality to be provided by the system. These requirements
typically describe the input to and the result of these actions. Another
way of saying this is that the functional requirements describe how the
system should behave in response to various inputs, whether from
users or other systems. Given this, functional requirements include
(but are not limited to) use-cases.
Use Cases
A use case3 is a description of an interaction between users and the
system (the term users in the context of a use-case includes people
and external systems). This interaction between the user and the
system is called a scenario. Each use-case has a primary (i.e.
positive) scenario and could have many alternate scenarios that could
cover areas such as what to do when exception conditions are
encountered in the execution of the primary scenario.

Non-Functional Requirements
As we mentioned before, in addition to the functional requirements
outlined above, there are other requirements that must be taken into

2 The functional requirements are also used to develop the functional specifications of a system.
3 Use cases are reviewed in more detail in Appendix 1.

 23 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

consideration when constructing a system. These, as a group, are
termed non-functional requirements, as they specify system features
other than functionality. Non-functional requirements represent
expectations or constraints that affect the system’s operation, not
what functionality it provides. These requirements include elements
such as environmental constraints, performance, usability, availability
(robustness, reliability, redundancy, etc.) and security. There are also
requirements that specify hardware and installation/deployment. As
with functional requirements, various forms of documentation may
comprise the set of non-functional requirements for a system.

Design
Practically speaking, it is difficult to examine Design4 completely
separately from Analysis as they are tightly coupled. In practice, they
are not like the “waterfall”5 model would suggest. In the “waterfall”
model, each phase6 of a development project is completed before the
next one is started. In fact, phases of a development project tend to
be more iterative, which does add to the project management
challenge. Indeed, in many cases, the design activities occur almost in
tandem with those of analysis.

In the Design phase, we take the high-level models from the Analysis
(class diagrams, etc.) and make them more concrete by factoring in
the environment, constraints, non-functional requirements, cost, time-
to-market, etc. The output of Design is a set of models that are the
basis for writing code. Design is a step further along toward
implementation.

In Design, we are specifying how the elements of the system that
provide the functionality and satisfy constraints (non-functional
requirements) will be implemented. In the Design phase, we refine
and add more detail to our analysis models. We also try to depict the
behavior of the system at run-time, via various diagrams that capture
how the system as a whole (or pieces) behave over time and what
interactions exist. We are able to do this because we have more
information at our disposal, having gone through analysis. We make
decisions such as which technologies will be used, what platforms will
be used, etc. No doubt, these decisions will be heavily influenced by
our non-functional requirements.

4 Design is discussed in Chapter 6.
5 “Waterfall” refers to the way projects are typically depicted in project plans, i.e. divided into sequential
project phases where one phase is completed before the next phase begins
6 A phase of a project represents a major unit of work for a project and is comprised of individual tasks

Object-Oriented Analysis and Design 24

X52.9267-001 Not for Commercial Use

Object-Oriented Capabilities and Benefits
Benefits
Obviously, given the progression of procedural languages, from 1st
generation to 4th generation languages, there are many proponents,
users and uses for procedural languages. However, these
shortcomings, are real and have far-reaching effects which grow in
proportion to the size of the problem to be solved and many would
also argue in proportion to the size (and number) of the teams
participating in developing the solution.

Let’s look at unrestricted access to shared memory as an example.
Two subprograms need to manipulate data (not local to each
subprogram). Each subprogram has the ability to read and write data,
thereby changing values in that particular data area. However, there
are no restrictions on which memory areas are accessible and which
are not. Errant code in one sub-program may overwrite the memory
area or areas used by the other, unbeknownst to it. This is different
from just changing the value of global data.

If you extend this simple example by assuming teams of programmers
would be participating in the problems solution, then you can see that
problems such as this could lead to many hard-to-find bugs in the
software.

Capabilities
The quest to find ways, i.e. development methodologies and
languages, to deal with issues such as these led to object-oriented
development. The inventors of OO sought to improve the overall
process of producing defect-free, robust code. Many of the issues
listed above were thought of as weakening the ability to produce
defect-free code. In addition, there were processes developed, which
“wrapped” the OO paradigm to further guide developers in creating
object-oriented software.

Basic Concepts of Object-Oriented
Development
In object-oriented way of thinking, systems are comprised of
collaborating “objects”. Each of these objects “knows” what it has to
do – it has a clear and distinct purpose, in addition to a clear and
distinct lifetime. “Objects” are created as needed (in an orderly
fashion) and provide a service through a well-defined interface. In
addition, they are destroyed in as orderly a fashion as that in which
they were created.

 25 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Briefly, in abstract terms, an object is a tangible entity that exhibits
some well-defined behavior, has an overall and specific purpose, has a
definable state and has a particular identity. Each of these will be
explored further. An object also includes its data (attributes) and the
means to manipulate this data (methods). Objects are also separate
and distinct from each other.

Thus, object-oriented thinking (and thus, object-oriented
development) is based on thinking in terms of objects and their
interactions with each other. The overall methodology is based on
recognizing and providing support for the following areas:

• Abstraction
• Hierarchical relationships
• Encapsulation
• Modularity
• Persistence

In order for object-oriented development to be useful, these elements
(present to varying degrees in procedural languages) must also be
present in object-oriented languages. As we progress, we’ll explore
how objects-oriented development addresses each of the “procedural
language” issues listed earlier, using these elements.

Definitions
Following from above, Object-Oriented Analysis (OOA) is an analysis of
the requirements that is based on object-oriented thinking. This is an
analysis that yielded the object-oriented decomposition, as opposed to
the top-down hierarchical decomposition of structured analysis.
Similarly, Object-Oriented Design (OOD) is design that is also based
on object-oriented thinking. In the design phase, we are concerned
with making the models developed in the analysis phase more
concrete and refined, ready for development. Object-Oriented
Programming (OOP) is the development of programming code based
also based on object-oriented thinking, but also uses an object-
oriented language and environment (C++, Java etc.).

Object-Oriented Analysis and Design 26

X52.9267-001 Not for Commercial Use

Sample Project
A picture is worth a thousand words. As an accompanying thought, an
example is worth much also. So, as we progress through each of the
10 sessions, we will apply the knowledge in gained thus far to
analyzing a set of requirements and designing a solution. As this is
not a programming course, we will stop short of implementing the
solution. However, many of the decisions that we will need to make in
our design stages are dependent on the target platform(s). We will
look at our design decisions in the context of different architectures, to
see what influences are present. Whenever assumptions are made
(and there will be some), we will clearly identify them. The actual
exercise will be introduced in the next chapter.

 27 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary
• Analysis is the activity of taking the functional requirements and

creating a model of the system. Object-oriented Analysis takes
the functional requirements and produces an object-oriented
decomposition (unlike structured decomposition).

• Design is the activity of specifying how to implement the

elements of the system that provide functionality and satisfy
constraints. Design takes the high-level models from Analysis
and makes them more concrete by factoring in non-functional
requirements as well.

• A requirement is a description of a feature. Functional

requirements describe the actions of the system. Non-functional
requirements reflect system constraints other than functionality
such as performance, usability, etc.

• Object-Oriented Programming is the activity of creating an

object-oriented program using an object-oriented programming
language.

• Object-oriented methodology is not new. It has been around

since the 1960’s, starting with Simula67.

• The object-oriented methodology is based on recognizing and
providing support for Abstraction, Hierarchy, Encapsulation,
Modularity and Persistence.

Object-Oriented Analysis and Design 28

X52.9267-001 Not for Commercial Use

Exercises
1. Based on your experiences, list any additional shortcomings of

the procedural approaches to system development

2. Define and give examples of abstraction, modularity and typing
in the context of procedural development

 29 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 2:
Classes and
Objects

Classes and Objects
Classes and objects are central to anything prefaced by the term
“object-oriented”, which, of course, includes object-oriented analysis,
object-oriented design and object-oriented programming (OOA, OOD,
OOP). In addition, as we will see later, the understanding and correct
choice of what should (or shouldn’t!) be a class is similarly central to
having a good object-oriented design.

The Meaning of the Word “class”
As you probably have guessed, based on your prior understanding and
usage of the word, a “class” is a group of items based on a set of
shared and similar characteristics, which are exhibited by all members
of the group. The characteristics of the class determine the expected
behavior and features of its members. A class may also (loosely) be
thought of as a set of elements.

There are some obvious parallels between set theory and the definition
of a class. In set theory, we have sets, subsets and elements. Sets
and subsets would most closely correspond to classes and subclasses,

Object-Oriented Analysis and Design 30

X52.9267-001 Not for Commercial Use

respectively. An element of a set would most closely correspond to an
object or instance of a class78.

Identification of Typical Classes
Before we can create an object-oriented model of a system to be
constructed, we must identify what specific building blocks we’ll use.
These building blocks are the classes that will be involved in our
system. The selection of classes is critical to our progress. Let’s
examine how we’ll do this.

Let’s define a class called “Humans”. Since, by definition, a class
represents a grouping where all elements share characteristics, we
would expect that our class Human to have characteristics (features
and behavior) such as:
Representing all items considered human
Oxygen used for breathing
High degree of intelligence9
Ability to communicate
Ability to interact via our 5 senses
Etc.

It is clear that this is not an exhaustive list of human characteristics.

Let’s define a class called “Automobiles”. As above, membership in
this class could be defined by the following:
Having a means of propulsion, such as an engine
Having a steering mechanism
Having a braking mechanism
Having accommodation for the driver
Having a mechanism to transform the output of the engine into
movement (forward and backward), i.e. transmission, propeller shaft,
differential(s), etc.

Obviously, again, this list of characteristics is not exhaustive. Equally
obvious is the fact that these characteristics are very high-level
characteristics. There are specialized versions of automobiles that
exist – cars, trucks, construction equipment, farm equipment, etc.
They can also be further specialized, i.e. for cars we could have

7 In case you were wondering, procedural languages just have no class.
8 This parallel between sets and classes is not absolute. For instance, with classes, there’s nothing that
parallels the intersections, unions and complements. However, the analogy of a set is a useful one in
attempting to understand the relationship between objects and classes.

9 May be an arguable point for some.

 31 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

sedans, coupes, etc. However, you will notice that all of these, in
general, share the high-level characteristics outlined above.

Let us think about the class “Computers”. Such a class (see Fig 2.1)
would be a very large one covering all computing devices. We would
expect a member of the set of Computers to be a computing device,
allow inputs, return outputs, have the ability to be issued
programming instructions, have the ability to execute programming
instructions, etc. This could be visualized as follows:

Laptop

PowerMac G3

iMac

iMac

Minicomputer

VAX
IBM AS/400 Cray Supercomputer

Computers

Mainframes
Mini/

MidRange
Computers

Personal
Computers

SuperComputers

IBM 37XX
Generic Mainframe

PCTower

Handheld
Computers

Other
Computing
Devices

PDA

Fig 2.1 Class "Computers"

This diagram shows the class “Computers” and some members of the
class. The class is large enough to be subdivided into additional
classes (subclasses). Each of these classes is also large enough to be
subdivided. In any case, some of the members of the classes are
listed. Each member of the subclass is also a member of the class
“Computers”.

Object-Oriented Analysis and Design 32

X52.9267-001 Not for Commercial Use

Modes of Transportation

Fig 2.2 Class “Modes of Transportation”

Class Semantics
The description of a class, which outlines the behavior expected of
each of its members, is, in effect, a contract between the class (and its
designer(s)) and the people that interface with its members. A class
may also be described as a blueprint for (and of) its members. Let’s
put this another way. When a class is defined, you are describing a
set of attributes and behaviours that each and every member of that
class will share. You should be able to predict what a member of a
particular class will be able to do, based on the definition of the class.
The phrase “what a member of the class will be able to do” is due to
the semantics of the class. The semantics are the rules defined in
each class and followed explicitly by each member.

In the prior section, we gave examples of classes and discussed what
characteristics members would have. These characteristics are
dictated by the semantics (or rules) of each class. As designers, we
will define classes and rules.

So, What is an Object?
Above, we’ve repeatedly used the term “members” of a class. What
are the members of a class? If we go back to our two examples
earlier, the members of the class Human would be people, each one of
which possesses human characteristics, i.e. features and behavior.

 33 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Each person (individual) exhibits the general set of characteristics that
we’ve described and that are exhibited by all humans.

For automobiles, the members of that class, for the purpose of this
discussion, are specific cars, trucks, etc.

Objects as Class Instances
Each member of a class is termed an instance of the class. An object
is an instance of a class. From our earlier discussion, an instance of a
class is a specific item that is representative of the class. Another
perspective is to say that an instance of the class is one item that is
completely and accurately described by the class’ definition. This
definition, as mentioned above, can be viewed as a contract between
the class’ designers and its clients (users).

Identification of Typical Objects
In the example above, we said the class Human could represent all
people. Each person would exhibit the general set of characteristics
that apply to all human. Each person could also be viewed as
individual objects of the class Human. The class Human would
effectively be the “blueprint” for each of the person “objects” that
exists at any given time.

Object Features
As a specific instance of a class, objects may be described as having
the following attributes:

Identity
In order for us to use an object, we must be able to uniquely identify
one object from another. So, each object (instance of a class) must
have a specific and unique identity. If we use our example of class
Humans, of which people are the members or objects, each person has
an identity. In many cases, fingerprints are used to verify someone’s
identity. Fingerprints are a universal and unique human attribute.
There are other means of establishing identity as well, albeit not
necessarily unique, such as a person’s name. The social-security
number is unique, but it is not universal.

Behavior
Each member of a class will exhibit the behavior outlined in the
description of the class, based on the semantics of the class. Thus, it
will be “well behaved”, i.e. it will do what is expected, nothing more
and nothing less. The behavior of an object is also referred to as its
functionality.

Object-Oriented Analysis and Design 34

X52.9267-001 Not for Commercial Use

State
As a specific instance of a class, an object will have a particular state
at a given point in time. The state of an object is determined by
assessing various factors (values or attributes) at that specific point in
time. For example, the state of a car at a given point in time may
involve assessing factors such as how much gas is in the tank, the
condition of its brakes, tires, engine, etc. The state of an object is
dynamic – it changes as time goes on.

So, an object is a specific instance (member) of a class, with the class
providing the blueprint.

What Makes Languages and Methods
Object-Oriented?
A language is considered object-oriented if it supports the major
elements of the object-oriented paradigm. This means is provides
language constructs for Abstraction, Encapsulation, Hierarchy and
Modularity. Each of these is discussed below. If a language doesn’t
support one of these (typically inheritance), it is termed object-based.
Languages such as C++ and Java support all of the attributes above
and thus are termed “object oriented”. Previous versions of Microsoft
Visual Basic10 were “object-based”, as they did not fully support
Hierarchy (as we’ll describe below).

Procedural and Object-Oriented
Language Comparisons Revisited
Procedural languages support and facilitate the implementation of
subprograms (procedures and functions). These subprograms exist as
a product of the decomposition of a problem into its sub-parts, i.e.
successively refined subprograms (top-down decomposition). Object-
oriented programming languages support (and facilitate) the
implementation of classes, which are the products of the object-
oriented decomposition of a problem.

Main elements of OO paradigm
In Chapter 1, we compared procedural and object-oriented
approaches. We said that there were some advantages that the
object-oriented approach had over procedural approaches. We saw

10 The current version of Visual Basic includes full support for inheritance, thereby making it object-
oriented.

 35 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

that using objects gets us out of the potential problems of shared,
unprotected memory. We also saw that objects are members of
classes, which are groupings that we define. These (and other)
benefits are obtained by using the object-oriented approach. The
object-oriented approach provides these advantages because of its
inherent support for the following elements:

1. Abstraction
2. Encapsulation
3. Hierarchy
4. Modularity
5. Persistence

A description and example of each of these is below.

Abstraction
Whenever someone delivers something, i.e. draws you a picture –
some sort of diagram or gives you a text document that doesn’t focus
on the details, i.e. high-level, they are using abstraction. With
abstraction, we are able to categorize items (areas of a problem space,
for example) into manageable chunks, each of which is easier to deal
with than the whole. We can then determine how these chunks
interact to provide the entire solution. Abstraction is one of the ways
we deal with complexity on a daily basis. An abstraction allows us to
focus on the significant areas of a problem (or system), without
focusing on all of the details of the problem (or system) all at once.
This is what makes those “chunks” manageable. We are able to
visualize the problem more easily, as we are not trying to see
everything at once, only the parts of interest and relevance.

Using abstraction, we can identify the classes that we use to describe
a system. Each of these classes will have a semantics that govern the
role of its objects in the overall system. With abstraction, we can
define these classes and include enough information, without having to
include every possible bit of data for the class. We’ll see more of this
later.

Object-Oriented Analysis and Design 36

X52.9267-001 Not for Commercial Use

Generic Shape
(Abstraction)

Represents

Octagon

Square

Triangle

Pentagon

Hexagon

Rectangle

Circle

Heptagon

Fig 2.3 Abstraction

In this example of abstraction, we see the generic shape on the left
that represents the shapes on the right. Because of Abstraction, we
can focus on a subset of the details of the shapes on the right. The
subset that we would focus on are those traits that are shared by all of
the shapes on the right. An example of such a trait is its perimeter11.
Another example of such a shared trait is the area of a shape.

11The set of shapes on the right-hand side of the diagram should more accurately be called 2-dimensional
shapes. This makes the use of perimeter more appropriate.

 37 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Represents

Fig 2.4 Abstraction

In fig 2.4, we see another example of abstraction. The toy horse on
the left is a greatly simplified (not the least of which is that it is
inanimate) view of a real horse, as pictured as right. It has some
features of the real horse (mane, tail, head, four legs, two eyes, etc.
It obviously does not many of the features of real horses, but, at this
level of abstraction, provides an adequate representation12.

12 It is critical to identify the appropriate level of abstraction. In this case, given the expected audience and
use of the rocking-horse, these features it does share, though few, are adequate. Many factors will have to
be considered when determining the correct level of abstraction.

Object-Oriented Analysis and Design 38

X52.9267-001 Not for Commercial Use

Class Student {
~~~~~~~
~~~~~~~
~~~~~~~
~~~~~~~
}

Represents

Fig 2.5 Abstraction

In this example, we are highlighting the fact that our abstractions will
be captured as class definitions. In these class definitions we include
the common data elements and common operations that we need to
capture. As before, these have to be at the correct level of
abstraction.

Encapsulation
Earlier, we described a class as a grouping of items based on a shared
set of characteristics. While accurate, we will add a few things to the
definition.

We discussed some of the shortcomings of procedural languages. One
of these was that we were unable to restrict access to areas of
memory, meaning there could be unauthorized access to memory that
we were expecting to use. In addition, we discussed the
implementation being open as well, with the possibility of major
consequences to minor implementation changes.

 39 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

In the OO paradigm, classes consist of data and the means to
manipulate that data. The class owns both of these items. The data
owned by a class may be referred to as its properties or attributes.
The means to manipulate this data is via functions, collectively known
as methods. The functionality provided by these methods determines
the behavior (as above).

In addition, how these methods are implemented, is kept on the
“inside” of the class, i.e. hidden from the outside. In addition, the
attributes of a class are not necessarily visible from the outside either,
so it is more difficult for memory to be overwritten or values changed
inadvertently.

We may extend our earlier examples of automobiles as follows:

Let’s introduce a class Car. The attributes of class Car may be as
follows:
Amount of Fuel
Speed
Etc.

Some of the operation of the Car class might be as follows:
Go Forward
Stop
Go Backward
Engine on
Engine off
Steer
Etc.

Most drivers do not know or care how, or what makes a car go
forward, backward, stop, turn, etc. They just want to know that it
does, and that it does so consistently, and according to expectations.
The interface between humans and cars consists of the steering wheel,
pedals, gearshift lever, ignition key, gauges, etc. For our example, it
is via this interface that the commands to go forward, etc. will be
delivered. The ability to “hide” how the car actually implements the
command to go forward, backward, etc. is provided by encapsulation.

Similarly, during the interaction between classes (and objects), there
should be no need to access the implementation of a method.

Object-Oriented Analysis and Design 40

X52.9267-001 Not for Commercial Use

To provide encapsulation, OO languages provide control over the
visibility of attributes (data) and methods13. We will explore the
access levels and what they mean later on.

The view of a class, from the “outside”, is termed its interface. This is
the set of the publicly accessible operations of the class14.

Why is Encapsulation Important?
The key concept in Encapsulation is that components (i.e. classes,
modules, etc.) all have information that is on the inside and is kept
hidden from outside eyes. The areas that are hidden may be those
that might be changed more frequently than the external view needs
to be aware of.. A data structure or specific calculation routine are
examples. Say we have a component that exports15 an operation
Sort(). We may want to change the implementation of the Sort()
routine to take into consideration different variables such as how large
a set we’re sorting, what elements are to be sorted, i.e. in an array,
as a dynamically linked list, etc. Depending on these variables, we
could use trivial, off-the-shelf algorithms or specially customized,
complex algorithms. The selection of the algorithm is not a detail that
needs to be visible to users of the component. In addition, if our
Sort() operation needed other operations that were only used with
Sort(), those should also be hidden. With Encapsulation, both are
hidden from view. We are able to hide the implementation of
operations, as well as complete operations, as necessary. When you
hide the implementation, this has a direct impact on reliability, as
certain changes are now controlled.

Given the capabilities of Encapsulation, the selection of which
operations are exported is a critical activity.

13 The data is not considered local data even though it is inside an object. Local data (and methods) are
defined inside a subroutine or function. In addition, those local elements are only visible inside that
subroutine or function. The term “local” is reserved for these items.
14 Of course, this will also be the set of publicly accessible operations of all objects of this class also.
15 Makes publicly available.

 41 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Interface Implementation

Due to encapsulation, the interface is public,
the implementation is private.

Fig 2.6 Encapsulation

Hierarchical Relationships
In this context, Hierarchy represents a structure that is an ordering of
items based on a relationship that is intrinsic to the structure.

Before, we used the class Automobile to describe shared
characteristics of a particular class. We also mentioned that we have
further specialized examples of automobiles. For example, we have
Cars, as a type of automobile, Sedans as a type of car, etc. Each one
is successively specialized, but they all share characteristics (features
and behavior) of the initial class Automobile. This is an example of
inheritance.

Inheritance
There are two types of inheritance – single and multiple. We will
concentrate on single inheritance.

Single Inheritance
Think of your family tree and choose either the women or men in your
family tree only. Starting with your grandmother or grandfather, your
family tree (a portion of it anyway), might look like this:

Object-Oriented Analysis and Design 42

X52.9267-001 Not for Commercial Use

Fig 2.7 Inheritance

You inherited traits, i.e. characteristics, from your grandparents. Of
course, each of them inherited traits from each of their ancestors
successively.

Let us look at another example – Printers:

 43 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Generic Printer

Fig 2.8 Inheritance

Inheritance is an example of a class relationship. Inheritance denotes
an “is-a” relationship (unlike composition, to be discussed later). The
ability to say something is-a kind of something else implies
characteristics and behavior, as before. If we go back to class Human,
we can extend the class and construct a class hierarchy as follows:

Human

Female

Girl

Fig 2.9 Inheritance

We can see from the diagram that Girl inherits from Woman and
Woman inherits from Human, etc. As a result, we would expect that
Girls would share the characteristics of Women and humans.

The root of our tree, i.e. the first class from which we inherit is called
the superclass. Each inherited class is called a subclass.

Object-Oriented Analysis and Design 44

X52.9267-001 Not for Commercial Use

Multiple Inheritance
The case where we inherit from more than one distinct superclass is
termed Multiple Inheritance16. If we added back the other half of your
family tree, we would accurately see that you inherited traits from
your mother and father, not just one (as implied in our example
earlier). So, you are a member of (is-a) your mother’s side of the
family, just as you are a member (is-a) of your father’s side of the
family.

Mother Father

Child - inherits from both

Fig 2.10 Inheritance

Aggregation and Composition
Composition and Aggregation are other examples of hierarchical
relationships. Unlike inheritance (is-a), a composition or aggregation
relationship is characterized by “has-a”. Composition and aggregation
express possessive, ownership or containment relationships. This
means, a container, such as a paper bag, can be modeled using an
aggregation or composition relationship.

16 It should be mentioned that whereas support for inheritance is a requirement, support for multiple
inheritance is not. Indeed, there are object-oriented languages, like Java which do not support multiple
inheritance. Further discussions of this are in Chapter 6.

 45 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

With Aggregation, in order for an object to be valid17, it is not
mandatory to have all of the “parts” present. With Composition, in
order for an object to be valid, all of the parts are mandatory. A car is
a good example of composition, as follows:

A car has (contains):
An engine
Transmission
Seats
Wheels and Tires
Etc.

In effect, a car is the sum of its parts, and cars have many parts.
Obviously, we cannot say an engine is a car, or a transmission is a car,
etc. The appropriate way to characterize the relationship between
cars, engines, transmissions, etc. is to say a car has an engine, has a
transmission, etc. In addition, a “valid” car is one that has all of the
requisite parts.

Engine Seats

Steering Mechanism Transmission

W heels and Tires Fuel System

A typical automobile (car, truck, etc.) is composed of
the followng components

Suspension System Etc.

17 Valid refers to the abstraction. If the semantics of the abstraction do not allow any missing parts, but call
for an aggregate, then we would use Composition. If the semantics call for an aggregate, with no rules as
to missing parts, we would use Aggregation.

Object-Oriented Analysis and Design 46

X52.9267-001 Not for Commercial Use

Fig 2.11 Composition

Fig 2.12: A city

A city is an example of aggregation. With aggregation, the whole, i.e.
the aggregate, is still valid whether the number of elements varies or
not. So, a city of zero, fifty, one hundred or one million residents is
still a city.

Why is Hierarchy Important?
The support for Hierarchy has a direct impact on code reuse. This is
because we can directly leverage previously developed code, in the
development of our system.

Modularity
Modularity is the ability to decompose or partition a system into a set
of collaborating components or structures. These structures could be
one or more files that contain code. A module is defined as a structure
that has data and operations defined on that data. In object-oriented
development, a module could be one class, or a group of classes.

Various languages support modularity. In such languages, modules
allow the definition of data that is visible throughout the module, but
not visible outside the module. In addition, they allow the control of
operational visibility also. This means some operations defined within
the module will only be visible inside the module, not from outside. All

 47 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

object-oriented languages (and quite a few non-object-oriented
languages) support modularity. As we shall see later on, the notion of
a “package” is also centrally related to modularity.

Why is Modularity Important?
Modularity is important for a number of reasons. We can employ
modular designs to leverage reusability. For example, we can create
modules that represent areas of the program that may be reused. For
example, we can create generic sorting modules, for instance. By
separating areas of our program’s functionality into modules, we can
more easily reuse some of that functionality than if we did not use
modules. This is true for both object-oriented and structured
approaches.

With modularity, we are able to separate areas functionally dissimilar
areas of our program, which yields greater clarity, reliability, etc. and
associated benefits. For example, we can group functional areas such
as user-interface, input/output, data management, etc. into separate
modules18. While these modules will interact and have many
interdependencies, the fact that they are separate will lead to overall
system reliability, as we can develop, test and certify and maintain
each separately.

For our discussion here, these components correspond to classes and
objects19. As before, each object is a specific instance of a class. An
object is concrete, while a class is abstract. So, even though we would
decompose a system into a set of classes, it is the interaction of the
objects, instanced from these classes that constitute the operational
system. The ability to have an operational system comprised of
cooperating objects (at run-time) is due to Modularity.

18 Depending on the complexity of the system, it may be necessary to have many modules dedicated to each
functional area.
19 As we will see in chapter 8, the term “component” has a specific meaning as well.

Object-Oriented Analysis and Design 48

X52.9267-001 Not for Commercial Use

Problem

Module E

Module B Module DModule C

Module F

Module A

Modular Solution

Fig 2.12 Modularity

This diagram illustrates the modular decomposition of a given
problem20.

Persistence
In general terms, it is critical to be able to preserve values between
sessions, i.e. from one time of usage to another. In object-oriented
development we work with object (at run-time) and we need the
ability to “save” the value of our objects from one session to the next.
For example, when we create a word-processing document, we save
the document, which translates the memory representation of the
document into a representation of the document on some other
storage device2122. We are most interested in storing the current state
of the document. This includes the text of the document, in addition
to any cosmetic changes styles we applied, etc. When our word-
processing program loads our saved document, we need it to present
our document in the exact state it was in when we saved it. Being

20 The illustration of the modular decomposition does not include links between modules so as not to imply
how the modules communicate. A modular system will have cooperating modules, with various
interactions and interdependencies.
Whereas the definition of module is general enough to fit both object-oriented and non-object-oriented
circumstances, object-oriented modules differ in structure that non-object-oriented modules.
21 Storage devices may be disk drives, CD-ROM, etc.
22 Serialization is another term used to describe translating from one form into another. Typically,
serialization does not describe how the data is persisted.

 49 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

able to save and restore our documents state is fundamental to how
we use programs such as word-processing programs. Imagine having
to complete every document at one sitting because there was no way
to save incomplete work! It is worth mentioning that the format of the
saved document is outside the scope of the discussion. Whatever the
format is, we must be able to take a document saved in that format
and do whatever we need to do to display a document ready for
editing.

This ability to save and restore state is also fundamental to object-
oriented development. It is the state of an object that we are
concerned with persisting. The state of the object is dynamic and is
based on the effects of various operations on the object that were
invoked, up to this point23. Object-oriented systems are composed of
objects interacting at run-time. If we end then resume a session, we
need to have a mechanism that allows us to save the state of our
objects at the end of the session and load our saved state at the
resumption of our session.

As we will see in Chapter 6, in our discussion of design, we may
employ various methods to persist object. The current crop of object-
oriented languages provides varying levels of built-in persistence. For
those with weaker support, we may employ additional methods to
achieve full persistence.

23 We are limiting the effect on an object’s state to the execution of operations, as public data elements in
objects are discouraged. We discuss this further in Chapter 6.

Object-Oriented Analysis and Design 50

X52.9267-001 Not for Commercial Use

Document in memory

Fixed media

Removable media

Save

Save

Optical media

Save

Fig 2.13 Options for saving a document

Benefits of OO Development
Earlier, in the recap of Chapter 1, we discussed some of the drawbacks
of procedural languages. The features of the OO paradigm directly
address these issues. For example, Encapsulation allows the
separation of the use of a procedure (method) and it’s implementation.
With Encapsulation the designer (of the method) is given a tool to
control its use and visibility. Abstraction allows the use of words that
reflect the real world that is being modeled. Hierarchy allows the
leveraging of relationships in a way that was not possible before. In
so doing, it promotes code reuse as well.

From this chapter’s discussion, we can expect the following, based on
the major features of the OO paradigm:

Abstraction – the ability to create a realistic model, which will make it
easier to render solutions, as these models are based on the language
(and definitions) of the problem space.

Encapsulation – the ability to identify data and methods, grouped
together into one element (class), with the added ability to determine
who has access to the data and methods.

 51 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Modularity – the ability to model an operational system based on
cooperating object, closer to reality than the earlier hierarchical
decomposition would allow.

Hierarchy – the ability to take advantage of shared characteristics
between groups of classes, adding further specialization (subclasses)
as necessary.

Persistence – the ability to preserve the state of objects across
sessions

As with most things, the correct application (or usage) of these items
will determine how many of the apparent benefits you are able to
enjoy.

Interfacing with Non-Object-Oriented
Systems
In this chapter, we are seeing a new way of viewing the solution to
problems (object-oriented vs. procedural). However, in the real world,
we are not always afforded the opportunity to “start over from
scratch”. In many cases, our solutions involve interfacing with existing
systems such as mainframes. In other cases, we need to utilize data
that resides in a variety of formats in various databases, files, etc. As
we develop our object-oriented toolkit, we will revisit these issues and
discuss possible solutions.
The elements of the object-oriented approach give us many
alternatives. For example, we could use Abstraction to create classes
that represent (i.e. abstract or hide) the legacy systems. With
Encapsulation, the details of the legacy system would be hidden
“behind” the definition of the class.

Identifying Classes
As listed before in the Analysis phase, we are attempting to discover
classes and objects. There are various approaches to doing this. The
key is that they are derived from the requirements of the problem
domain. Remember, the system we will ultimately design has to
satisfy our requirements.

In one example (Shlaer/Mellor), classes and objects usually come from
Tangible things Cars, telemetry data
Roles Mother, teacher

Object-Oriented Analysis and Design 52

X52.9267-001 Not for Commercial Use

Events Interrupts
Interactions Loan, meeting

Another perspective (Ross), based on database modeling yields the
following:
People Humans who carry out some function
Places Areas set aside for people or things
Things Physical objects
Organizations
Concepts
Events

Here is yet another set of sources for potential objects
(Coad/Yourdon):
Structure Is-a/part-of relationships
Other Systems External systems with which the

application interacts
Devices
Events remembered
Roles played
Locations
Organizational units
Subject Areas Higher level of abstraction: group of

classes

Behavior Analysis
Another school of thought uses Behavioral Analysis, which is the focus
on primary behavior as source of classes and objects. This is closer to
conceptual clustering as we are forming classes based on groups of
objects displaying similar behavior. Conceptual Clustering is the
approach whereby classes are generated by formulating conceptual
descriptions then classified according to the descriptions. A derivative
is to use classifications based on behaviors viewed as function points.
A function point is one end-user business function. A business
function represents some kind of output, inquiry, input, file or
interface. Thus, a business function represents any outwardly visible
and testable behavior of the system.

Domain Analysis
On a larger scale, we also have Domain Analysis, which is an attempt
to identify the objects, operations and relationships that domain
experts deem important about the domain (of all applications). This is

 53 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

applicable to all systems in a domain, as opposed to some of the other
approaches, which are more applicable to individual systems.

Domain Analysis seeks to identify the classes and objects that are
common to all applications within a given domain, such as securities
trading, etc.

Domain analysis helps by pointing you to key abstractions that have
proven useful in other related systems.

Some of the steps of Domain Analysis are as follows:

• Construct models based on consulting with domain experts24
• Examine existing related systems and represent using common

format
• Identify similarities and differences between systems by

consulting with domain experts
• Refine strawman25 to accomodate existing systems
• DA may be applied vertically: across similar applications or

horizontally: related parts of same application.

Use-Case Analysis
The previous practices depend heavily on the experience of the analyst
(domain expertise). With use-case analysis, this shifts to the
experience of the end-user. This practice may be coupled with our
earlier approaches as well.

As mentioned above, a use-case26 is a particular scenario that begins
with some user of the system initiating some transaction or sequence
of interrelated events.

Users/domain experts/development team members enumerate
scenarios fundamental to the system's operation. These will
collectively describe the system functions of the application (part of
the requirements gathering phase).

Analysis then proceeds by studying each scenario, outlining the
objects that participate in each scenario, each object's responsibilities

24 Note: “Domain expert”: experienced user.
25 A “strawman” is a model, prepared with the understanding that all details are possibly unavailable at the
time of its creation.
26 Use cases are discussed in more detail in Appendix 1.

Object-Oriented Analysis and Design 54

X52.9267-001 Not for Commercial Use

and how objects collaborate with each other. A clear separation of
concerns among all abstractions is crafted.

The scenarios captured in the use cases may also be used as the basis
of system tests.

Informal English
In this practice, we write an English description of the problem then
underline all nouns and verbs (Abbott). The nouns represent
candidate objects and the verbs represent candidate operations on
them. This is useful, because it forces the developer to work in the
vocabulary of the problem domain. However, it is not rigorous,
because of the ambiguities in and impreciseness of the English
language (verbs may be derived from nouns and vice versa).

Structured Analysis
Many of us are familiar with the process (and results) of structured
analysis. Many tools and methods support structured analysis. The
idea with starting with structured analysis is to reuse such artifacts by
creating a “bridge” to the object-oriented way of thinking.

Candidate objects may be derived from the following:
External entities
Data stores
Control stores
Control transformations

Candidate classes may be derived from:
Data flows
Control flows

Data transformations we assign as either operations on existing
objects, or as the behavior or "agent" objects.

Finding Key Abstractions
Key abstractions are very important to our overall process. A key
abstraction is an abstraction that is to be included in our models and
subsequent design. There are potentially many candidate classes that
may be reviewed. Not all candidate abstraction s will necessarily
become classes. As we examine each one, we will keep those that

 55 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

have merit, i.e. represent the real-world objects we want to model.
These key abstractions are the abstractions that will become classes.

The primary value of a key abstraction is that it gives boundaries to
our problem - highlight things in our system relevant to our design.
The identification of key abstractions allows us to be specific about
behaviors, hence the notion of boundaries. Key abstractions will
always be domain specific, i.e. specific to the domain of the problem.

The identification of key abstractions uses two mechanisms: discovery,
i.e. obtaining the abstraction from the requirements, and invention,
i.e. adding abstractions that were not explicit in the requirements. We
may recognize key abstractions through interactions with domain
experts and review of the requirements. If they talk about it, then it
may be an important abstraction. Through invention, we may add
abstractions that are not part of the problem domain, but should be
part of the solution. Many of the abstractions identified out of
invention are useful in design or implementation.

One of the most powerful ways of identifying key abstractions is to
look at the problem and see if there are any abstractions that are
similar to the classes and objects that already exist.

CRC Cards
CRC cards are a simple, yet effective way of helping to understand
how a particular candidate class would fit into your overall picture.
CRC means Class/Responsibilities/Collaborators.

A CRC card is an index card (typically 3inches by 5 inches). With the
name of the class written at the top of the card, on one side, list the
responsibilities of the class. On the other, list all of the other classes
that are collaborators with this class.

Object-Oriented Analysis and Design 56

X52.9267-001 Not for Commercial Use

Sample Project

Here is our “problem”. We will work through the following example.

Requirements
Design a program to manage student information based on the
following criteria:

There are three types of students: Typical, Faculty and Transfer.
Typical students are regular college students, about which the
following information is typically captured – Name, Address, ID and
Major.
Some students may also be faculty of the college. In this case, what
subject they teach is captured. Members of faculty are also given a
discount based on their years of service, 10% for up to 5 years, 20%
for 6-10 years, 30% for more than 10 years. Only faculty members of
this college are eligible.
In addition, some students may be temporary transfers from another
college. In this case, we need to know their home college and it’s
address to be able to return their grades at the end of the semester.

All students over the age of 55 are eligible for a 15% discount (in
addition to other discounts if possible).

Students may be full-time or part-time. Full-time students are those
with 10 credits or more. Part-time students are those with less than
10 credits.

The current classes are as follows:

• Abstract Algebra 4 Credits
• Calculus 4 Credits
• Intro to Computing 4 Credits
• Advanced Computing 4 Credits
• Object Oriented Programming Using C++ 4 Credits
• English 3 Credits
• Spanish 3 Credits
• Chemistry 3 Credits
• Physical Education 1 Credit
• Art History 2 Credits

The college charges $100 per credit per semester.

The current majors are as follows:

 57 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

• Math
• Computing
• English
• Chemistry
• Undeclared

Periodically, the college will add new classes and majors to these lists.
Students may have at most two majors.

The system must be capable of the following:

• Adding a new student’s information
• Searching and displaying a student’s information
• Deleting a student
• Changing/assigning classes and credits to students
• Changing/assigning a student’s major
• Changing/assigning a student’s type
• Changing/assigning a student’s status, i.e. full-time or part-time

according to the rules above
• Producing reports as follows:

Sorted list of full-time students (all information)
Sorted list of part-time students (all information)
Number of students of each type (typical, faculty and transfer)
For each type of student, a sorted list of student names and
addresses
For each type of student, a reversed list of student names and
addresses
List of all students, their majors and number of credits
A sorted list of all students based on their cost for the semester

Notes:

• The system will maintain student data in a relational database
• The system should allow the entry of complete information at

time of addition
• Implement a simple, straightforward user interface27
• Design for “real-world” use - employ error handling where

appropriate

27 We will discuss user interface objects in Appendix 2

Object-Oriented Analysis and Design 58

X52.9267-001 Not for Commercial Use

Chapter Summary
• A class is a group of items based on a set of shared and similar

characteristics that are exhibited by all members of the group.

• Each class has a set of semantics or rules that govern its
behavior.

• An object is an instance of a class.

• Objects have identity, behavior and state.

• Abstractions allow us to focus on the relevant characteristics of

the real world object it represents. It is a simplification.

• Encapsulation allows us to separate the interface from the
implementation.

• Hierarchy allows us to leverage the similarities that exist

between classes and enables use of previously developed code.

• Modularity allows us to partition a system into a set of
collaborating components.

• Persistence allows us to preserve the values of objects.

• We may use various techniques to identify classes such as

Behaviour Analysis or Domain Analysis.

 59 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Exercises
1. Create an example demonstrating each of the following:

inheritance, composition, aggregation and association.

Object-Oriented Analysis and Design 60

X52.9267-001 Not for Commercial Use

Chapter 3

Class Structure
We have now developed a basic understanding of the OO paradigm,
i.e. way of thinking. We will now go forward and delve more deeply
into the details of classes and objects, by continuing our discussion of
class structure and interactions.

The definition of a class can be abbreviated as follows:

A class is a structure that contains data and methods that
manipulate that data.

Data, in this definition, represents the data contained in a class, what
we’ve also referred to as values, attributes or properties or fields.
Methods are the functions (or procedures) that are defined within the
class as members of the class (also referred to as member functions).
Methods operate on the data defined in the class. Methods are the
only functions that directly operate on the data in the class without
explicit permission.

 “Design-time” and “run-time” Defined
For us, “Design-time” refers to the activities during the Design phase.
In the Design phase, some new classes may be defined, while those
existing (as of the Analysis) are refined as necessary. Class
relationships are identified and exploited as appropriate. At “run-
time”, we have objects collaborating to provide the functionality of the
system.

 61 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

What is Class Structure?
Let us define a class that represents a general shape. Class Shape
would then be a generalization for all shapes, such as circles, squares,
trapezoids, triangles, hexagons, etc. Based on the definition above, as
represented in pseudo-code, we can construct a very general class
definition for Shape as follows28:

In C#:
abstract class Shape
{
/* Data */

 double area;

/* Methods */
 public abstract double CalculateArea()29;
 /* no implementation */
}

The attribute area is defined as a number. For our purposes, number
could be either integer or real (including double and long, depending
on the size of our shapes 1).

We’ve also defined a method CalculateArea(), which for our
purposes, returns a value (of type integer), which represents the
calculated area of our shape.

As we said before, we intend to let class Shape be a generalization of
all shapes.

Let’s also see what this class definition would look like in two popular
object-oriented languages:

In C++:

 class Shape{
 int area;
 public virtual int CalculateArea()=0; /* function
 prototype only – no implementation */

28 The examples are in pseudocode, C++, C# and/or Java.
29 public, as used here, will be defined later

Object-Oriented Analysis and Design 62

X52.9267-001 Not for Commercial Use

}

In Java:
abstract class Shape{
 int area;
 public abstract int CalculateArea();
 /* no implementation */

}

Let’s go further and define two additional classes, circle and rectangle.
As shapes, a circle and a rectangle share properties in common, as we
can say a circle is a shape and a rectangle is a shape also. We can
rewrite this, using language from last class as follows:

• A circle is-a shape
• A rectangle is-a shape

This use of is-a is a depiction of a particular type of relationship,
Inheritance, which was discussed as part of Hierarchy (one of the main
elements of the OO paradigm).
As class designers, we want to exploit these classifications where
beneficial. So we want to exploit the similarities between circles and
shapes, and between rectangles and shapes - definitely candidates for
inheritance.

Let’s define class circle as follows:

In C#:

class Circle : Shape30
{
/* data
 const double PI = 3.14159; /* rounded */
 double radius;

/* methods */
 double CalculateArea()
 {
 }
}

30 In C#, the colon “:” in the class definition, as used here, indicates inheritance, with the immediate
superclass appearing to the right of the colon, the subclass to the left.

 63 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

class Rectangle : Shape
{
/* data */

 double length;
 double width;

/* methods */
 double CalculateArea()
 {
 }

}

Since we’re using inheritance, we do not need to redefine area – we
inherit it from our superclass Shape. A superclass is a direct ancestor
of a class. So in this example, Shape is the superclass for both circle
and rectangle. We refer to circle and rectangle as subclasses. This
means that circle and rectangle are specializations of shape. With
circle and rectangle, we’re no longer referring to all generic shapes –
we’re now referring only to shapes that conform to the definition of
circle and rectangle.

For class Circle, we’ve added a new field called radius. The value of
this field will be needed for us to calculate the area of a circle.

For class Rectangle, we’ve added two new fields – length and width.
These are necessary for the calculation of the area of a rectangle and
are self-explanatory.

Note – with these changes, even though circles and rectangles are
both shapes, we can see that circles and rectangles are quite different.

Let’s discuss what we need to do with the superclass method
CalculateArea(). As you’ve seen from above, we have redefined
CalculateArea() in both of our subclasses.

The reason for this becomes clearer when we consider exactly how we
calculate the area of circles and the area of rectangles. They are not
the same.

For circles, area = PI * (radius)2

For rectangles, area = (length * width)

Object-Oriented Analysis and Design 64

X52.9267-001 Not for Commercial Use

Obviously, any implementation of CalculateArea() other than these
for Circle and Rectangle would be incorrect.

So, we need to implement the specific steps in CalculateArea() for
Circle and Rectangle.

Implementing specific functionality in a subclass method, where the
method name is the same as in the superclass is known as method
overriding. This means we are able to implement, in each derived
subclass, the appropriate steps for calculating the area of that specific
shape.

Here are important questions for us to answer:

a) How would we implement CalculateArea() for the generic
shape class?

b) Why would we implement CalculateArea() for class Shape?

In the context of class Shape, i.e. what we understand via the generic
description of the class, Shape represents generic shapes, no specific
shapes. In order to calculate the area of a particular shape (note the
word particular), we need to know the specific shape for which we
need to calculate the area. This means an implementation of
CalculateArea()in the superclass Shape has no meaning in this
context. So the answer to question b) is: we wouldn’t implement
CalculateArea()in the superclass at all.

So why include CalculateArea() in the superclass at all? Well, all
shapes have an area, with the way to calculate that area being specific
to that particular shape. So, as designers of the class, we wanted to
make a provision in the superclass for the calculation of a shape’s
area. We want to make sure that all classes that inherit from shape
implement a method that calculates that shape’s area with a method
named CalculateArea().

Abstract Classes
Let’s back up a moment. We just said that there was no
implementation of CalculateArea()in the superclass, because such
an implementation, in this context, would make no sense. However,
we have declared the method CalculateArea()in the superclass. As
a result of this, class Shape is considered an abstract class. An
abstract class, such as class Shape, is one in which there is no
implementation for at least one declared method. Methods for which

 65 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

there is no implementation are also considered abstract (pure virtual
in C++; defined as abstract in Java and C#). In Java and C#, the
declaration of abstract methods requires adding the word “abstract” to
the method declaration.

Abstract classes are very interesting to work with. Like all classes,
they serve as a blueprint (from our earlier discussion). However,
unlike other classes, they cannot be instanced, i.e. objects of abstract
classes cannot be instantiated. So, in our example, we would not be
able to create any generic shape objects. In addition, any class that
inherits from an abstract class has to provide an implementation for its
abstract methods or it will also be considered abstract.

So to recap, shape is our superclass or base-class. It is the root of our
class-hierarchy. Class circle and class rectangle are subclasses of
class shape. The relationship is characterized by is-a:

Circle is-a shape
Rectange is-a shape.

However, bear in mind that though circle and rectangle both inherit
from shape, the following relationship is not valid, i.e.:

Circle is-a rectangle (wrong!)

This is obviously incorrect.

So each derived shape class knows how to calculate it’s own area.
This ability is important to object oriented thinking.

Let’s examine another subclass square. Class square is a
specialization of class rectangle. A square is a rectangle with the
length and width being equal. This example is a bit simplistic, but it
will serve to illustrate a point regarding overriding methods.

Class Square (inherits rectangle) is described as follows:

class Square : Rectangle
{
/* data */

/* methods */
}

Object-Oriented Analysis and Design 66

X52.9267-001 Not for Commercial Use

We have declared neither data nor methods. This is because, in our
simplistic example, the data and methods declared for rectangle are
appropriate for square as well. The idea here is this: though we are
able to override the CalculateArea()method of class Rectangle and
we are able to add new fields to class Square, we will do so when it’s
appropriate. In this example, the way we calculate the area of a
rectangle is the same as the way we calculate the area of a square.
In both cases we use (length * width). So we can use the data and
methods, as defined in the superclass (in this case class Rectangle)
and they are still appropriate. Compare this to the earlier situation
regarding the implementation of CalculateArea()in class shape. In
this case, we do not need to override CalculateArea()for class
Square.

Class and Object Interactions
As we discussed earlier, objects are instances of classes. How do we
represent objects in OO languages (or in our pseudo-code)? In reality,
objects in a programming language are declared in the same way as
variables, with the difference being the type (in this case class is
synonymous with type). So let’s assume we have declared the
following variables (objects):

Shape objShape; /* illegal! Remember - cannot
 create instance of
 shape because Shape is
 abstract */

Circle objCircle;

Rectangle objRectangle;

Square objSquare;

We can draw parallels between classes and types and objects and
variables as follows:

Each new class we define introduces a new data type. A class is an
example of a user-defined type. A class defines a kind or type of
objects. In fact, the values of a class are objects. What does this
mean? Let’s review primitive types for a moment. Let’s use a
primitive type as an example. Examples of primitive types are types
such as integers and characters (int, char, etc. in C++/Java). Let’s
use the character type for our example. The character type represents

 67 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

all Unicode or ASCII characters (depending on language). However, a
particular character value represents one character.

For example:

 char c = ‘A’;

In Java, C# or C++, this represents one member of the set of all
characters, i.e. only the character ‘A’.

Similarly, an object represents one example (or instance) of all objects
represented by a particular class definition.

How Classes Determine the Behavior of
Objects
As mentioned above, objects are instances of classes. Another
perspective is that a particular object (instance) is “one-of” the set of
all objects defined by the class. This is an important point. The
definition of a class provides the blueprint for an object. An object
cannot have data or methods not provided for (i.e. defined) in the
class of which it is an instance.

The behavior of an object is based on the functionality of its methods.
Of course, the methods are defined in the class definition. So, the
class, which is the blueprint for the object, determines, based on this
blueprint, what the behavior of the class will be.

Introduction to Class Modeling using
UML31
Some important events occurred in the software industry in the mid
1990’s. One of the more important among them was the unification of
the work by Booch, Rumbaugh and Jacobson, now known as the
“Three Amigos”. Booch, Rumbaugh and Jacobson are among the
pioneers of object methodology. Each was pursuing different areas
separately. Their “coming together” has yielded the modeling
language now known as UML, the Unified Modeling Language. In
addition to UML, there is also a complete methodology that has been
created for software developments, which uses UML to depict its
artifacts.

31 Appendix 2 is a brief UML reference

Object-Oriented Analysis and Design 68

X52.9267-001 Not for Commercial Use

UML is a general purpose modeling language designed to specify and
document the products (i.e. artifacts) of software systems. With UML,
we are able to visually describe the structure and behavior of object-
oriented systems.

History of UML
As mentioned earlier, UML is a unification of previous modeling
methods. These earlier methods included Booch, OOSE (Object-
Oriented Software Engineering – Jacobsen) and OMT (Object Modeling
Technique – Rumbaugh). Development of UML began in 1994 when
Grady Booch and Jim Rumbaugh of Rational Software began unifying
the Booch and OMT methods. In the fall of 1995, Ivar Jacobsen joined
the unification efforts and merged in OOSE. Further inputs from
several other companies were accepted and UML 1.1 was submitted to
the OMG (Object Management Group) for adoption in 1997.

UML Notation
Using UML, we can represent classes, objects and their respective
relationships. This list of icons is certainly not exhaustive, but it
introduces us the icons used to represent classes and objects, such as
those we’ve designed so far. As we progress through the chapter, we
will add more icons and model more complicated structures.

 69 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Class1

Object1

End1 End2

-End1

*

-End2

*

This icon represents a generalized class in UML.
The class name is first and is bold and is above
the first horizontal line. Attributes and operations
may be added above each of the following
horizontal lines,respectively

This horizontal line represents a link (i.e. an
association) between two classes (note: in
practice, line not necessarily horizontal)

This icon represents an object, with the object's
name underlined and above the horizontal line

This line represents a link between objects (note:
line not necessarily only horizontal)

Classes and Objects in UML

Fig 3.1 UML Notation

Object-Oriented Analysis and Design 70

X52.9267-001 Not for Commercial Use

*

*

1

*

*

*

Depicts binary association, i.e.
between two classes.

Depicts a composition
relationship (filled diamond)

Depicts an aggregation
relationship (clear diamond)

Depicts an inheritance
relationship. The arrow points
from the subclass to the
superclass

* *

*

Depicts an N-ary association,
i.e. an associative relationship
between many classes.

Fig 3.2 UML Notation

 71 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Let us revisit our shape example from before using UML Notation:

+calculate_area()
-area

Shape

Square

+calculate_area()

-radius
-PI

Circle

+calculate_area()

-length
-width

Rectangle

Class Diagram in UML

Fig 3.3 UML Class Diagram

In each case, the arrows indicate the direction of the inheritance
relationship. In addition, the diagram includes the character ‘A’ in the
inverted triangle (in the Shape class icon) to communicate that Shape
in an abstract class.

Benefits of Class Modeling
The fundamental reasons to use modeling notation is for analysis and
communication. Modeling is the act of creating a visual representation
of the structure and behavior of a system. It allows (at a certain level
of abstraction) the communication of certain concepts more clearly
(and easily) than the alternatives. The spoken (natural) language,
regardless of which one, is imprecise, and thus sometimes is not as
useful when it comes to more complex concepts. At the other end of
the spectrum is code. Code is very precise – it represents the very
detailed instructions you’re giving the machine to execute, via

Object-Oriented Analysis and Design 72

X52.9267-001 Not for Commercial Use

translation or directly. While being very precise, it is also too detailed.
So models are used when a certain level of precision is required, or
needs to be conveyed, but when you also do not want to be lost in all
of the details. Another way of looking at it is that modeling allows
someone to obtain an overall view of the system, one that may be
comprehensive and detailed, but which is not bogged down by the
specific implementation details particular to each language and
environment.

Modeling Activities
As above, we will use modeling notation for communication. We will
need to communicate various aspects of our system, during each
phase of development. We will begin with class diagrams for
communicating class structure. As we progress, we will employ other
UML diagrams to describe various perspectives of object behavior.

Sample Project

Analysis
Identifying the abstractions (classes) is the key to solving this
problem. This activity will be iterative and we’ll make small steps of
progress, as discussed earlier.

Let’s start with the informal English method. Let’s identify possible
abstractions by underlining nouns, as follows:

Design a program to manage student information based on
the following criteria:

There are three types of students: Typical, Faculty and
Transfer.
Typical students are regular college students, about which
the following information is typically captured – Name,
Address, ID and Major.
Some students may also be faculty of the college. In this
case, what subject they teach is captured. Members of
faculty are also given a discount based on their years of
service, 10% for up to 5 years, 20% for 6-10 years, 30%
for more than 10 years. Only faculty members of this
college are eligible.
In addition, some students may be temporary transfers
from another college. In this case, we need to know their

 73 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

home college and its address to be able to return their
grades at the end of the semester.

All students over the age of 55 are eligible for a 15%
discount (in addition to other discounts if possible).

Students may be full-time or part-time. Full-time students
are those with 10 credits or more. Part-time students are
those with less than 10 credits.

The current classes are as follows:

• Abstract Algebra 4 Credits
• Calculus 4 Credits
• Intro to Computing 4 Credits
• Advanced Computing 4 Credits
• Object Oriented Programming Using C++ 4 Credits
• English 3 Credits
• Spanish 3 Credits
• Chemistry 3 Credits
• Physical Education 1 Credit
• Art History 2 Credits

The college charges $100 per credit per semester.

The current majors are as follows:

• Math
• Computing
• English
• Chemistry
• Undeclared

Periodically, the college will add new classes and majors to
these lists. Students may have at most two majors.

From this exercise, we have the following nouns:

Program
Student
Information
Typical
Faculty
Transfer
College
Name

Object-Oriented Analysis and Design 74

X52.9267-001 Not for Commercial Use

Address
Id
Major
Faculty
Subject
Discount
Semester

Obviously, there may be additional potential classes for us to use if we
use other methods.

How do we determine whether or not these potential or candidate
classes make sense in the context of the problem to be solved?

Let’s restate the problem. What we are asked to do is design a system
to “manage” a group of three types of students. Let’s see what the
requirements said:

Your system must be capable of the following:
• Adding a new student’s information
• Searching and displaying a student’s information
• Deleting a student
• Changing/assigning classes and credits to students
• Changing/assigning a student’s major
• Changing/assigning a student’s type
• Changing/assigning a student’s status, i.e. full-time or

part-time according to the rules above
• Producing reports as follows:

Sorted list of full-time students (all information)
Sorted list of part-time students (all information)
Number of students of each type (typical, faculty and
transfer)
For each type of student, a sorted list of student names
and addresses
For each type of student, a reversed list of student
names and addresses
List of all students, their majors and number of credits
A sorted list of all students based on their cost for the
semester

Notes:

• The information in the system is for the current
semester only – no history

• The system should allow the entry of complete
information at time of addition

 75 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

So, by “managing” our group of three types of students, our system
must be capable of providing the required functionality listed above.

In reviewing our list of candidate classes (our nouns), we don’t have a
candidate class “System”. Let’s add one, giving us the following:

Program
Student
Information
Typical
Faculty
Transfer
College
Name
Address
Id
Major
Faculty
Subject
Discount
Semester
System

Given our understanding of the problem, let’s investigate each
abstraction’s semantics by employing CRC cards, or their equivalent.
So, imagine you have 3x5 cards, on each of which you have written
one of the nouns extracted earlier. On one side we will put the class’
responsibility and on the other side, we will put the class’
collaborators.

Let’s view each of these separately:

Program
Responsibilities
Hmmm. Something called “program” seems to refer to what we’re
trying to design. So the responsibilities of “program “ would be to
provide the functionality per the requirements.
Collaborators
With the responsibilities of Program define as above, it would seem
that it would interact with many or all of the classes included in the
design. But, as we have not investigated the other classes, let’s defer
this until later on.

Object-Oriented Analysis and Design 76

X52.9267-001 Not for Commercial Use

Student
Responsibilities
This class represents all students in our college. This seems to be
central to our design. What are the responsibilities? A student is
responsible having zero, one or two majors, a selection of one or more
classes, etc.
Collaborators
From the information we’ve gathered so far, the Program class, in
addition to majors and classes would be collaborators.

Information
Responsibilities
What would this class represent? That is not clear. In re-reading the
requirements, it seems we should have put “information” with
“student”.
Collaborators
None.

Typical
Responsibilities
This class would represent one group of students. Upon further
review, it seems the responsibilities of this class are very similar to
those of the student class outlined above.
Collaborators
Same as Student.

Faculty
Responsibilities
This class also represents one group of students. The responsibilities
of this class are also very similar to those of the student class outlined
above, with the exception of the following: In representing students
that are also faculty, this class must also keep track of what subjects
are taught as well
Collaborators
Same as Student.

Transfer
Responsibilities
This class also represents one group of students. The responsibilities
of this class are also very similar to those of the student class outlined
above, with the exception of the following: In representing students
that are also transfers, this class must also keep track (via college
name and address) of which college these students have come from.
Collaborators

 77 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Same as Student.

College
Responsibilities
In the context of the problem, this class would represent colleges.
Thus, this class would be responsible for keeping names and address
and any other information relevant to colleges, given in the problem.
Collaborators
Transfer students

Name
Responsibilities
This would represent a student’s name. Not enough information was
given in the problem to determine how a name should be represented.
We will have to make an assumption, as follows: first name, last
name, middle initial and title (Mr., Mrs., etc.)
Collaborators
This class would collaborate with all classes that need names, such as
the student, typical, transfer and faculty student classes.

Address
Responsibilities
This would represent an address. Enough information was not given in
the problem to determine how an address should be represented. We
will have to make an assumption, as follows: street, city, state and
zip.
Collaborators
All classes requiring an address, i.e. student, typical, transfer and
faculty student classes, in addition to the college class.

ID
Responsibilities
This class would represent a student’s ID.
Collaborators
Student, typical, transfer and faculty student classes.

Major
Responsibilities
This would represent a student’s major. Enough information was not
given in the problem to determine how a major should be abstracted.
So we may assume that a major would only have a name.
Collaborators
Student, typical, transfer and faculty student classes.

Object-Oriented Analysis and Design 78

X52.9267-001 Not for Commercial Use

Faculty
Responsibilities
In the context of the problem, this class would represent all members
of faculty of a college. Not enough information is available.
Collaborators
The College class.

Subject
Responsibilities
This class would represent all subjects available to students. Based on
the requirements, this class would contain the subject’s name and
number of credits.
Collaborators
Collaborators could include Student, Typical, Transfer and Faculty
“student” classes, in addition to the Program class.
Discount
Responsibilities
This class would represent all discounts available to students.
Collaborators
Collaborators could include Student, Typical, Transfer and Faculty
“student” classes.

Semester
Responsibilities
This class would represent all semesters.
Collaborators
Collaborators could include Student, Typical, Transfer and Faculty
“student” classes, the College class and the Program class.

System
Responsibilities
This class would be responsible for providing the functionality outlined
in the requirements. In addition, something has to get the ball rolling.
The system class would be responsible for this as well.
Collaborators
Collaborators could include Student, Typical, Transfer and Faculty
“student” classes, etc.

 79 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary

• A class provides the blueprint for an object, as an object is an
instance of a class.

• UML is a general purpose modeling language designed to specify

and document the products of software systems.

• Class modeling helps us in analysis and allows us to
communicate better.

Object-Oriented Analysis and Design 80

X52.9267-001 Not for Commercial Use

Exercises
1. Create class diagrams for each of the examples of inheritance,

composition, aggregation and association done for the previous
sessions’ assignment.

 81 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 4

Class Relationships and Interactions

Class Hierarchies
Last chapter, we discussed the structure of classes. We added a new
definition of a class as follows:

A class is a structure that contains data and methods that
manipulate that data.

Based on this definition, we looked at how we would implement
sample classes and extended our discussion to include inheritance. To
review, the inheritance relationship is based on similarities between
supertypes (i.e. superclasses) and subtypes (i.e. subclasses). These
similarities are described by “is-a”.

Examples (from last time):

 A circle is-a shape
 A rectangle is-a shape

Subclasses inherit methods and data from superclasses (i.e. parent
classes or base classes).

Taken as a whole, this is an example of a class hierarchy. A class
hierarchy represents relationships between classes. The hierarchy
may be an inheritance hierarchy (as in our previous example), but
there are other hierarchies as well, such as Composition, Aggregation
and Association. Each is discussed below.

Object-Oriented Analysis and Design 82

X52.9267-001 Not for Commercial Use

Inheritance and Polymorphism

Inheritance defined
Inheritance is the relationship (as in our previous example) where one
class is the superclass and the other(s) inherit from, or extend the
functionality defined in that class. Again, this relationship is
characterized by “is-a”, also as above.

Polymorphism defined
Polymorphism literally means “many forms”. The relevance of this
becomes clearer below.

In the last chapter, we discussed abstract classes. A class is described
as abstract if it contains at least one abstract method. An abstract
method does not have an implementation in the class in which it is
declared. A subclass that inherits from an abstract base class, but
does not provide implementations for the abstract methods is itself an
abstract class.

In our example from last chapter, we had the following:

abstract class Shape
{
/* Data */

 double area;

/* Methods */
 public abstract double CalculateArea();

}

 83 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

class Circle : Shape
{
/* data
 const double PI = 3.14159; /* rounded */
 double radius;

/* methods */
 public double CalculateArea()
 {
 //implementation omitted
 }
}

class Rectangle : Shape
{
/* data */

 double length;
 double width;

/* methods */
 public double CalculateArea()
 {
 //implementation omitted
 }
}

Class Square : Rectangle
{
/* data */

/* methods */
}

Object-Oriented Analysis and Design 84

X52.9267-001 Not for Commercial Use

+calculate_area()
-area

Shape

Square

+calculate_area()

-radius
-PI

Circle

+calculate_area()

-length
-width

Rectangle

Class Diagram in UML

Fig 4.1 UML Class Diagram

In our discussion, we determined that we would not be able to provide
a meaningful implementation for CalculateArea() in class Shape.
This is because, in our example, the steps to calculate the area of a
circle and of a rectangle are very different (in this example, Square is
a subclass of Rectangle, but the methods of calculating the area is the
same for both). This can also be seen in the additional attributes that
were introduced in class Circle and in class Rectangle. So, because
there is a declaration but no implementation for CalculateArea()in
class Shape, the class is an abstract class.

We said that inheritance was the “is-a” relationship. As before, we can
say,

A circle is-a shape
 A rectangle is-a shape
 A circle is-a rectangle // Incorrect!

 85 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

We also discussed that classes and objects are related. An object is an
instance of a class. In programming languages, a class corresponds to
a type. More specifically, a class corresponds to a user-defined type.
Correspondingly, in programming languages, an object would be a
variable declared of that type (in general).

To illustrate our example, let us introduce the concepts of pointers
and references (address-of).

A pointer is a special variable that holds the memory address of a
variable. In C++, we are not allowed to create instances of abstract
classes, but we are allowed to create pointers of that type. This may
sound contradictory, i.e. to what are we pointing if we can’t create
instances? The answer to this is forthcoming. In our example, we will
use the asterisk, placed before the variable name to signify a pointer
(*), i.e., here is our base-class pointer32:

 Shape *ptrShape;

Variables are essentially areas in memory, set aside to hold particular
values. The size of the area is dependent upon the type of the value it
is to hold. This area in memory has an address. In some
programming languages, there are operators that allow us to obtain
this address. These are reference (or address-of) operators.

So let’s also assume that we have created two objects, one of class
Circle and one of class Rectangle, as below:

C++:

Circle objCircle;

Rectangle objRectangle;

C#:

Circle objCircle = new Circle()33;

Rectangle objRectangle = new Rectangle();

32 Note: not all languages, object-oriented or otherwise provide support for pointers. Java does not provide
support for pointers. In C#, when using pointers, your code is termed “unsafe”.
33 In C# (as in Java), we must explicitly use the “new” keyword to indicate that we’re requesting memory
for creation of our object. This is not required in C++, as objects are implicitly created when declared.

Object-Oriented Analysis and Design 86

X52.9267-001 Not for Commercial Use

So, given these declarations (and the inheritance relationship), we are
allowed to use the pointer to Shape to “point” to either of the objects
of Circle or Rectangle.

In C++:

ptrShape = &objCircle; /* “&” is our address-of
 operator */

ptrShape = &objRectangle;

in C#:

ptrShape = objCircle; /* “&” is not used for
 address-of in C# */

ptrShape = objRectangle;

We are allowed to do this because of the “is-a relationship”, i.e.:

A circle is-a shape
 A rectangle is-a shape

In programming language terms, Circle is of the same type as Shape
and Rectangle is the same type as Shape. As such, these assignments
are legal.

Let’s make this assignment:
C++:

ptrShape = &objCircle;

C#:
 ptrShape = objCircle;

With this assignment, we will use this pointer, ptrShape, to
manipulate the object to which it points. All of our classes have the
declaration of CalculateArea(). As before, it is not implemented in
class Shape. ptrShape is of class Shape. It is reasonable to expect
that we would be attempting to call the version of CalculateArea()in
class Shape if we did the following:
C++:
 double thisarea = ptrShape-> CalculateArea();

C#:
 double thisarea = ptrShape.CalculateArea();

 87 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Remember, there is no implementation of CalculateArea() in class
Shape.

Now let’s repeat this for Rectangle, as follows:

C++:

ptrShape = &objRectangle;

double thisarea = ptrShape->CalculateArea();

C#:

ptrShape = objRectangle;

double thisarea = ptrShape.CalculateArea();

We know that class Circle has an implementation of CalculateArea(),
as does class Rectangle. In actuality, ptrShape, after each
assignment, “points” to an object of that type. In fact, ptrShape
“knows” that it is pointing to a different object in each case. So when
we invoke (i.e. call) the CalculateArea()method using the ptrShape
pointer, we get the appropriate implementation of CalculateArea(),
for each assignment and invocation made earlier. This behavior is an
example of Polymorphism. Polymorphism describes multiple
behaviors, i.e. the selection of the correct implementation of methods,
from one source, i.e. our base class pointer.

Here is another example of Polymorphism:

Given the example above, suppose we have a method called
GetTheArea() defined in some class (or globally), which takes one
parameter, a pointer (or a reference in C#) of type Shape. The
method would be defined as follows:

C++:
double GetTheArea (Shape *ptrShape) {
 return ptrShape->calculate_area()
}

Object-Oriented Analysis and Design 88

X52.9267-001 Not for Commercial Use

C#:
double GetTheArea (Shape ptrShape)
{
 return ptrShape.CalculateArea()
}

Here, we see that this method could be called with a pointer actually
pointing to any of our subclasses, as they all resolve down to type
Shape. In this way, we could have this one method able to handle any
subclass of Shape. As long as the method called inside, i.e.
CalculateArea(), is defined in the superclass shape, we have no
problems creating and executing a method such as GetTheArea().

Polymorphism is available due to late-binding and method overriding.
In describing Inheritance and Polymorphism, we’ve used classes that
have the same methods declared in each of them. When base class
methods are re-declared and re-implemented in subclasses, those
methods are overridden. We say the subclass overrides the
superclass method. So, in Circle and Rectangle, we see overridden
examples of CalculateArea(), as it was first declared in the
superclass Shape. With late-binding, the object being referred to
becomes the target of the execution – it is not based solely on the
type of the reference or pointer (as in our example). So, if we actually
had a Circle object, we would want to execute CalculateArea()for
our object of class Circle, not CalculateArea()for Shape, which we
could not, anyway. Late-binding allows this determination to happen
at run-time, not at compile time, which is otherwise the norm.

Benefits and Drawbacks of Inheritance
Inheritance allows the leveraging of similarities between classes. This
could allow us to define functionality in one place, extending it as
needed. This in turn, reduces redundancy and can promote more
efficient production of code. Also, if the base functionality is
“certified”, i.e., has been tested and works, extending it lessens the
“risk” of the new code, as it were. In addition, changes to
superclasses are available to subclasses without necessarily changing
the subclasses. Inheritance can make the job of designing, coding and
maintaining somewhat easier. Also, the ability to exploit
polymorphism is as a result of inheritance.

Inheritance does come at a price, though, if done intelligently, the
price may not be great relative to the code reuse and convenience
aspects. The run-time environment has to manage all of the facilities
needed to provide inheritance and polymorphism. In addition,

 89 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

whereas changes to superclasses may benefit subclasses, disaster may
strike if superclasses are changed in ways which significantly change
the behavior of subclasses.

Composition and Aggregation
This relationship is characterized by “has-a” (as opposed to is-a). With
Composition and Aggregation relationships, we are describing
“container” relationships, i.e. a class contains objects (variables) of
other classes.

Composition is another example of an Aggregation class relationship,
though it is a much stronger form. Composition implies that the
component is an integral part of the whole aggregate. Think of a
square. A square has four sides of equal length. A square cannot
exist without four sides of equal length. Thus, there exists a strong
ownership of the components, by the aggregate structure. We may
restate this by saying the following. With Composition, there is a
strong coupling between the aggregate class and the elements that
are aggregated, whereas with Aggregation, the coupling is much
looser.

We can use an automobile as an example of Composition. An
automobile is made up (and is the sum) of many parts, such as an
engine, seats, a steering wheel, wheels and tires, etc. So if we
designed a class Auto, Auto would have to contain these (and other)
elements, to provide the expected behavior of a car. Each of these
elements are objects, with their own behaviors. However, an auto is
not “valid” if any of these parts are missing. For example, imagine a
car without an engine!

Differences between Aggregation and Inheritance
Inheritance relationships depict similarities between classes that fit the
“is-a” form. Composition/Aggregation relationships depict a
relationship between classes of the “has-a” form. The semantics are
borne out by the examples above. Either of these forms of hierarchy
will support the design goals of code reuse, etc. The decision of which
to use must be made based on which relationship may be exploited to
greatest value.

Class Associations
Associative Relationships Defined
There is yet another class relationship, Association. With Association,
we are describing associative relationships between classes. To
demonstrate association, let us ponder a typical sale at a merchant. A

Object-Oriented Analysis and Design 90

X52.9267-001 Not for Commercial Use

sale is a type of transaction that involves one or more items that were
for sale. Let’s assume that each of these items, part of the overall
inventory, is an individual object. Let’s also assume that we have a
class Sale, which represents this type of transaction. Then we can see
that this type of transaction, a Sale, is associated with the items
purchased by the customer, each of which is represented by a
particular class.

Cardinality
We can use cardinality to help describe associative relationships.
Associative relationships may be 1-1, 1-many or many-many. If we
generalize the example above to be one between sales and items for
sale, then we see this relationship is 1-many, as we can have more
than one item for sale included in one sale transaction.

Here is an example:

class ItemForSale
{
 double price;
 int numberInStock;
}

class Sale
{

ItemForSale item;
 Date date;
 int quantity;
 Person salesperson;
}

 91 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

+price : long
+number_In_Stock : long

Item_For_Sale

+itemForSale : Item_For_Sale
-date : Date
-quantity : long
-salesPerson : Object

Sale

1
*

Fig 4.2 Associations

Types of Associations between Classes

Mandatory and Optional Associations
Some associations depict mandatory relationships between classes,
others optional. Our example depicts a mandatory relationship
between the Sale and ItemForSale classes. Obviously, we cannot have
a sale if we have not sold anything! So, for each sale, there must be
at least one item for sale that was included in the transaction.

Which Relationship do we Choose, When?
Each of the relationships above lend themselves to certain situations.
Inheritance may be useful when that relationship makes sense, i.e.
there is a “is-a” relationship between classes. In addition, we could
use inheritance when we seek to leverage the similarities between
groups. Inheritance also gives us the opportunity to leverage
polymorphism. Aggregation, and the stronger form, Composition,
allows us to create classes comprised of objects of other classes.
Association allows us to define associative relationships between
classes. Fundamentally, the type of relationship should depend on the
behavior we are trying to implement.

What are the Costs/Benefits of Each?
Each relationship has a cost and a benefit. Some costs are not as
quickly noticed as others. For example, in order for Inheritance (and
Polymorphism) to work, the programming environment must support
late-binding. In late-binding, the resolution of objects is postponed

Object-Oriented Analysis and Design 92

X52.9267-001 Not for Commercial Use

until run-time, as opposed to at compile-time as usual. This requires
additional structures such as vtables34, etc. This adds overhead to the
program’s execution, although these structures are highly optimized so
as to not add to much. Inheritance does allow code reuse, by allowing
the inheritance of the functionality defined in superclasses. In
addition, Polymorphism, which is available due to Inheritance, could
lead to simplification of the program’s code. Inheritance is also an
example of tight-coupling – explained later on.

Aggregation and Composition affords us benefits as well. Here, we are
able to change the structure of the component parts without affecting
the aggregate. This could give us net rewards, as we may avoid
wholescale changes to our system, due to a change to one component.

As all of these are available to us, we can use any or all of these, with
any combination in designing our object-oriented systems.

Interfaces vs. Implementation

What is the Interface of a Class?
The interface of a class describes what is visible from “outside” that
class. The visible members are those that are accessible to other
objects. The interface does not refer to what is visible to methods
declared inside a particular class.

Another perspective is that the interface of a class specifies the
operations of a class that are visible to the outside world, without
allowing the outside world the ability to see how those operations are
implemented. The interface implies the class’ functionality, but has no
details about implementation.

Implementing a Class’ Functionality
A class’ functionality is the based on the definitions of methods within
the class. The interface of the class is providing an interface to the
functionality of the class, though not necessarily to all methods defined
within the class.

34 In order to support polymorphism, object-oriented languages have the ability to do late-binding. With
late binding, certain specific types are not resolved until run-time. Virtual tables (vtables) are used to
resolve (bind) types at run-time. This is how a pointer or reference to a subclass object is resolved, even
though the pointer or reference may have been defined originally as a pointer or reference to a superclass.

 93 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Encapsulation and Information Hiding
Our discussion of interfaces has to start with the discussion of access
control.

Earlier in Chapter #2, we stated:

In the OO paradigm, classes consist of data and the means to
manipulate that data. The class owns both of these items. The
data owned by a class may be referred to as its properties or
attributes. The means to manipulate this data is via functions,
collectively known as methods. The functionality provided by
these methods determines the behavior (as above).

In addition, how these methods are implemented, is kept on the
“inside” of the class, i.e. hidden from the outside. In addition,
the attributes of a class are not necessarily visible from the
outside either, so it is more difficult for memory to be
overwritten or values changed inadvertently.

Access Level Controls
Part of the overall view of encapsulation is obtained by using access
controls. Access controls restrict (or allow) access to the methods and
data of a class. In general, there are three access levels for methods
and data: public, private and protected.

With a public access level, class methods and data are accessible by
other objects and variables. An example follows.

Let’s assume we have the following class:

 class PublicExample

{
 public int mydata;
 }
Let’s also assume we have the following declarations, outside of the
class PublicExample:

 int thisnumber;
 PublicExample objMyObject;

With the public access level, this statement is legal, using our “dot”
notation for member access:

Object-Oriented Analysis and Design 94

X52.9267-001 Not for Commercial Use

 thisnumber = objMyObject.mydata;

This is allowed because of the public access level. The data contained
in the object objMyObject, is accessible from “outside”, i.e. we are
able to complete the assignment.

With private access, methods and data so declared may only be
accessed from methods declared inside the class. The methods and
data declared private are also not accessible by subclasses. So, if we
revisit our earlier example, we have the following:

Let’s assume we have the following class:

 class PrivateExample

{
 private int mydata;

}
Let’s also assume we have the following declarations, outside of the
class PrivateExample:

 int thisnumber;
 PrivateExample objMyObject;

With the private access level, this statement is not legal:

 thisnumber = objMyObject.mydata; // not legal!

This is not allowed because of the private access level. The data
contained in the object objMyObject, is not accessible from “outside”,
i.e. we are not able to complete the assignment. However, if we
declared methods inside class PrivateExample, we would be able to
access mydata.

With protected access, methods and data so declared may only be
accessed by methods declared inside the class or inside subclasses.
So, if we revisit our earlier example, we have the following:

Let’s assume we have the following class:

 class ProtectedExample

{
 protected int mydata;

}

 class DerivedClass : ProtectedExample

 95 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

{
 //method
 public void PrintMyData()

{/* does not return a
value, only prints mydata */

}
}

Let’s also assume we have the following declarations, outside of the
class ProtectedExample:
 int thisnumber;
 DerivedClass objMyDerivedObject;

We can invoke the method PrintMyData(), as follows:

 ObjMyDerivedObject.PrintMyData(); // legal

If we’ve implemented this function correctly it will print the value of
mydata. This is allowed because of the protected access level. The
data contained in the object objMyObject, is not accessible from
“outside”, i.e. we are not able to access mydata directly.

 thisnumber = ObjMyDerivedObject.mydata // illegal!

However, we are able to access mydata from inside the method
declared in the derived class because it was declared protected in the
base class.

The interface of a class then, is the view from the outside. In general,
the public and protected data and methods constitute the interface. Of
course, we’re only including the protected methods for those cases
when we’re using inheritance and are accessing such methods and
data from subclasses. If we’re not using inheritance, protected and
private are equivalent.

These access levels, when used with methods allow us to restrict
access to the methods themselves, in addition to hiding the
implementation of the methods by placing them inside the class.

Why Have Private Class Data?
Here’s a quick scenario. Suppose I have a class Person, with, among
other data elements, an integer field age. Let’s define field age to be
public. Now, based on the implied semantics of class Person, we
would expect a person’s age to be a positive integer (since we’ve
defined it as an integer). Values such as -1, or any negative value

Object-Oriented Analysis and Design 96

X52.9267-001 Not for Commercial Use

would be invalid. We wouldn’t knowingly assign such a value to age,
would we? Indeed, we could, and nothing could stop us because the
age field is public. This is the sort of thing we’d want some validation
to catch, before it ended up being assigned to a field. But, again,
since the field is public, the assignment will happen and be completed
before any validation could occur. Now, the fact that the age has a
negative number could cause all sorts of problems for the program,
because, the reasonable expectation of how objects of class Person
would behave does not include representing folks with a negative age!

This can be prevented by making the age field private and defining
public Accessor35 methods to provide access to the data. These
Accessor methods (typically Get() and Set(), or properties in Microsoft
languages) allow you to have the data come in via a method which
performs validation before the assignment is complete. If there is an
error, it can be dealt with at the point of attempted assignment, not
somewhere downstream.

Sample Project
From an analysis of each class’ responsibilities, we see that there’s a
lot of similarity between all four classes. This strong similarity is borne
out by the language of the requirements, which refers to these as
different “types” of students. That would imply that each type of
student is fundamentally a student, just with different attributes.
Hmmm. Sounds like we may be able to identify and use our
inheritance relationship, i.e. is-a. So, we have the following:

A Typical Student is-a Student
A Faculty Student is-a Student
A Transfer Student is-a Student

35 So named because they provide “access” to private data

 97 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Student

Typical Student Faculty Student Transfer Student

Fig 4.2 Student Diagram

As with everything else, we will have pros and cons to any decision we
make. If we use this hierarchy, it would appear that it allows us the
flexibility of easily having other types of students in the future, if we
need to. Obviously, the need to do this is outside of the scope of the
problem.

If we look at the responsibilities of the Student and Typical Student
classes, we notice that they are very similar. In fact, based on the
requirements, the attributes of the Student class are the same as the
attributes of the Typical Student class. This could make the Student
and Typical Student classes redundant. So, we could create the
hierarchy above, which would give us future flexibility, or we could
ignore (i.e. throw out) class Student and have our hierarchy begin with
class Typical Student. If we begin with Typical Student, we still have
the ability to add new student types later on. The only potential
caveat would be that they would inherit the behavior of Typical
Student. This hierarchy is described below:

Object-Oriented Analysis and Design 98

X52.9267-001 Not for Commercial Use

Typical Student

Faculty Student Transfer Student

Fig 4.3 Student Diagram

What would happen if we ignored the potential inheritance relationship
between the “student” classes? That gives us two options. We could
have one class that represents all types of students, or we could have
three separate classes, one for each type of student, as follows:

Class EveryStudent:
Name // for all three types
Address // for all three types
Major // for all three types
Subject taught // for faculty
Home college name // for transfers
Home college address // for transfers

If we had one class for each student, we would have to put all of the
attributes for all three types of students into one class. While this is
possible, it would mean that every time we had an instance of that
class, all of these attributes would be available, whether or not they
were necessary. This means, faculty student objects would have the
home college name and home college address attributes, even though
they may never be used for those types of students. In addition,
typical student objects would have the two attributes of transfer
students and the attribute of faculty students, i.e. subject taught as
well, even though these may never be used either. The counterpoint
is that the system is supposed to allow changes in student types, so
this could be one argument for having all attributes in one class.

 99 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Let’s also consider what would happen if we needed to introduce
another type of student with different attributes? This would force us
to have to change our one large class and that may have
consequences that may have far-reaching effects on all of the other
areas of our system that interact with objects of that class. In fact
any change to our class may have far-reaching effects on other areas
of our system. So having one monolithic class may not be wise.

Another alternative is to have each type of student be an unrelated
class, i.e. not related by inheritance (or any other relationship). This
is also possible. This means that while introducing a new student
type would not have any effect on the other student classes, it would
have far-reaching effects on the rest of the system, as all areas of the
system that interact with students would how have to be modified to
accept a new student type, in addition to the others. Also, having
separate classes could mean increasing the complexity of the system,
as now the system has to manage 3 or 4 separate unrelated items, as
opposed to 3 or 4 related items, allowing us to leverage inheritance
and polymorphism, for example.

We will revisit our decisions and the alternatives as we evaluate our
design using the metrics (last chapter).

If we look at the Program and System abstractions and their
responsibilities, etc., we see some similarities here also. It appears we
have to do for these classes what we did before for the Student and
Typical Student classes. We may discard Program and keep System.

If we look at the College abstraction, we see this abstraction
represents the name and address of colleges, from which transfer
students come. We have a choice here. We could just keep the
college information as attributes directly in the Transfer Student class,
or we can use this abstraction and use a composition relationship
between the Transfer Student class and the College class. What are
the criteria for our decision? If we place the information for colleges in
the College class, we are acknowledging that we have more than one
piece of information regarding colleges and we are allowing for
changes to the information we keep on colleges to be made more
easily. We are also potentially introducing more complexity, as we will
have another class in our system representing colleges. However, as a
rule, it is wiser to only include “atomic” values as attributes in a class.
The information we need to keep for colleges is not “atomic” because

Object-Oriented Analysis and Design 100

X52.9267-001 Not for Commercial Use

we need to keep two pieces of information on colleges, i.e. the name
and address of the college. So we keep the College class.

We will also keep the Name and Address abstractions. The reasons
outlined above for the College class applies here as well. The
information we need to keep for names and addresses are not
“atomic”, so we will use an abstraction for each of these.

In contrast, the information needed for a student’s ID seems to be
“atomic”. We don’t have enough information in the requirements to
determine that a single value (i.e. “atomic”) would not be sufficient.
Possible ID’s could be a student’s social security number or a
generated number that is guaranteed to be unique across all students.
In either case, we are left with only one value. So we do not need an
abstraction for ID. Instead, we will let ID be an attribute of a student.

Let us examine the Major and Subject abstractions. We do not have
any information about Major to suggest that it will not be single-
valued, i.e. just the name of the major. So we may or may not need
an abstraction for Major. For Subject, we know we have two pieces of
information for each subject, the subject’s name and number of
credits. In addition, we also know that each student will be taking one
or more subjects. So that implies that we need to keep a list of
subjects for each student. Regardless, the same criteria we’ve used
above is relevant here. If we include the Subject information with the
attributes of a student, then it causes us to have to manage changes
to individual subjects. So we don’t need the Major abstraction, but we
will keep the Subject abstraction.

The Faculty abstraction would represent all members of the faculty of
a college (including those that were students). We could leverage
Multiple Inheritance. We have a class representing Students and a
class representing members of faculty. Effectively, a class
representing both gives the behavior of Faculty Students. However,
we do not have any information in the requirements to describe what
behavior the Faculty abstraction would have. As a result, we will not
utilize this abstraction.

We’re left with two abstractions to review, that of Discount and
Semester. Even though there may be more than one discount in
effect for a student, i.e. a faculty member that is also a student over
55 will get the benefit of both discounts. However, that resulting
discount will be single valued. Regarding Semester, based on the
requirements, we are only keeping information for one semester

 101 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

anyway. So that implies this is single-valued also. From this, it seems
we do not need either abstraction.

So, of our initial list of abstractions (candidate classes), what are we
left with?

Typical Student
Faculty Student
Transfer Student
Home College
Name
Address
Major
Subject
System

Are there any other abstractions that we need? Definitely. Some of
these are as follows. Each student may take one or more subjects.
This implies we need to maintain a list of subjects for each student.
Our choices are to manage this list in the Typical Student class or to
create another class to do that for us. For this example, for clarity and
consistency, it would be better to have the list of subjects as an
abstraction. An object of this class would then be included as an
attribute of the Typical Student class.

Students may have up to two majors. We could use the same
guidelines we used above and develop an abstraction for a list of
majors for each student also.

Per the requirements, the school may add new classes and new majors
periodically. This implies that the school (system) needs to maintain a
list of all available classes and a list of all available majors, from which
students will choose. This then implies two new abstractions, one for
each of these lists.

We also need to manage a list of all students. Thus, we will create an
abstraction to do this also.

Our list of abstractions is now as follows:

Typical Student
Faculty Student
Transfer Student
Home College

Object-Oriented Analysis and Design 102

X52.9267-001 Not for Commercial Use

Name
Address
Subject
Major
System
Student Majors
Student Subjects
All Majors
All Subjects
All Students

 103 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary
• Inheritance is the relationship where one class is the superclass

and others inherit from or extend the functionality defined in
that class.

• Polymorphism (“having multiple forms” describes the ability to

use superclass references (or pointers) to manipulate subclass
references (or pointers) due to inheritance relationship.

• Classes may also have optional or mandatory associative

relationships.

• The interface of a class (or object) describes what is visible from
outside the class (or object).

Object-Oriented Analysis and Design 104

X52.9267-001 Not for Commercial Use

Exercises
1. Create an object-oriented model of a directory of files on a

computer. Create a class diagram to describe the model.

 105 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 5

Object Structure and Relationships
In the previous chapter, we continued our discussion of class
relationships with the discussion of Polymorphism, Composition
(Aggregation and Association) and Access Controls. In this chapter,
we will discuss the objects and their interactions.

What is an Object?
To recap, an object is a specific instance of a class. As we stated
earlier, an object is constructed based on a “blueprint” that is the class
specification.

Structure of an Object
A class is a structure containing methods and data. The construction
of a class is a design-time activity, i.e. you decide what the elements
of your class will be before run-time (execution).

An object is an instance of a class. You may also view an object as
one of the members of a class. These two terminologies mean the
same thing – an object has to obey the rules set out by the class’
design.

Objects are built or created based on a “blueprint”, i.e. the class
structure. This means at run-time, memory is allocated for each
object to be created, based on the fields and methods in the class.

For each object created, there is then, a block of memory to hold fields
and methods. While this statement is generally true, in fact, there are
some twists we must be aware of.

Object-Oriented Analysis and Design 106

X52.9267-001 Not for Commercial Use

Instance Fields
As mentioned above, each object has memory allocated for fields. In
general, then, each object has its own copy of the fields defined in the
class. These fields, for which each object has it’s own copy, are called
instance fields. This also means each instance of the class (or object)
has it’s own copy.

Example:
If we use the Circle class from before, then we have:

class Circle : Shape
{
/* data */
 public const double PI = 3.14159; // rounded
 double radius;

/* methods */
 double CalculateArea()
 {//implementation
 }
}

An instance (object) of class Circle would be represented as follows:

Circle objCircle = new Circle();

We would then expect to be able to execute statements such as:

double x,y, area;

x = objCircle.PI;
area = objCircle.CalculateArea();

We would be able to execute similar statements for every object of
class Circle that we created.

Class Fields
We could argue that it is redundant for each object of class Circle to
have its own copy of PI, as it doesn’t change. So, ideally, we would
like to have one copy of PI that could be shared by all objects, instead
of one copy for each object, as implied above. Fields for which there is
one copy, shared between all instances of a class are called class

 107 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

fields36. There is one copy of a class field, in a special area of memory
that is shared by all instances of the class.

Here is another example of the need for class fields. Let’s imagine a
mechanism for counting the number of objects of a class created by a
program. We’ve said objects are unique, have a state, have their own
copy of data, etc. Nothing we’ve said thus far has implied that the
number of these objects is available to us, for example. One way to
keep track of the number of individual objects of a particular class is to
utilize a class field. You would increment the class field every time an
object was created, and decrement the class field when the object was
destroyed.

Class fields are also referred to as static fields, based on popular
object-oriented languages such as C++ and Java. In our pseudocode,
we will also use the keyword static to describe class fields.

We may then rewrite class Circle as follows:

class Circle : Shape
{
/* data */
 public static double PI = 3.14159; // rounded
 double radius;

/* methods */
 public double CalculateArea()
 {
 }
}

Methods
As discussed above, method definition is a design-time activity. By
the time you’ve written your program, you’ve also defined your class’
methods. Unlike fields (instance or class), methods do not change
during execution. The statements in a method may be passed
different parameters, but the statements themselves (and the
methods) do not change. As such, object-oriented languages as C++
and Java allow objects to share methods. So each method accesses
(and effectively gets a copy of) the methods (and their local variables)
of a class at execution time.

36 Class fields are also termed static fields in languages such as C++ and Java.

Object-Oriented Analysis and Design 108

X52.9267-001 Not for Commercial Use

Object Initialization
We’ve stated that an object has state, identity and behavior. This
implies that each time we create an instance of a class, we expect that
object to behave as certain way, based on the blueprint (class
definition). In fact, we expect an object to be ready for use. This also
implies that we expect any initializations to be done prior to use.

A constructor is a special method that is used to initialize objects prior
to their use.

Let us revisit our earlier (non-static) example of the class Circle:

class Circle : Shape
{
/* data */
 public const double PI = 3.14159; // rounded
 double radius;

/* methods */
 public double CalculateArea()
 {
 }
}

Let us create a particular circle, as follows:

Circle objCircle // based on our pseudocode

If we create an instance of this class, what value do we expect radius
to have? Depending on the environment used for implementation,
radius may be initialized by default to be 0 or 0.0 (integer or real).
Just as likely, radius may not be initialized at all. Regardless, if we
create a particular instance of Circle, we do not have control over what
initial value the field radius has initially. This is potentially dangerous
and could lead to system errors. For example, if the field radius is
initialized with a negative value, say, what does that mean for the
class Circle? That may not be appropriate. Instead, what we need to
ensure is that each circle is created with an initial value that is
appropriate. We will need to explicitly create a constructor to
accomplish this.

Object-oriented environments typically provide a default constructor
for cases where a constructor isn’t explicitly defined. This may or may
not address issues such as the initial value of a number, as outlined

 109 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

above. Default constructors have other limitations. In cases where
the design of a particular class includes dynamic memory allocation,
default constructors would not be able to handle these scenarios, as
the constructor would not be able to make appropriate decisions.

Constructors are methods that are executed prior to the object being
ready for use. This is important. It is important that the constructor
complete its tasks prior to the object’s use, as this will properly
initialize the object’s fields. While it is possible to set initial values of
the objects after creation, i.e. not using a constructor, there is no
control over what values are used to initialize the object’s fields if
initialization is done this way. Neither is there any control over the
completeness of the initialization. Either or both of these potential
issues can lead to hard-to-find problems later on.

Constructor Usage
One of the most important aspects of constructor usage is to
remember why you’re creating the constructor in the first place.
Earlier, we talked about classes having “semantics”, i.e. rules. A class
is a programmatic representation of something concrete in the real
world. Whatever we’re representing will have a set of rules that we
use to make sure it is valid. Many of these rules may apply to what
the real-world item is like when it is created or made available, i.e.
initially. In our programmatic world, these rules are enforced using
constructors. Here is an example. Let’s say we are creating a program
that represents a group of students in a classroom, where each
student is represented by an individual object. Each student object
would have a name, address, student ID, to name a few, as a real
student (after which our object is modeled) would. In the real world,
would a student without a name be allowed in the class? How about
without a student ID? If the answer to any such question is “no”, then
in our program, we cannot allow student objects to exist without
having the required information within. How do we enforce this? We
create constructor(s) that require the necessary information to be
passed as arguments. In this example, it will never be ok to have a
student object without this information. So, in addition to creating
constructors that require this information, we must not create a
default constructor for this class. Remember, the system only
provides a default constructor when you do not explicitly define one.
So in this case, having defined one or more constructors to enforce
your class’ rules, the system would try to utilize those constructors
only.

Object-Oriented Analysis and Design 110

X52.9267-001 Not for Commercial Use

Suppose you have a class that you don’t want instantiated? What can
you do to enforce this? This is just another “rule” that a constructor
can enforce. We mentioned above that constructors are public
methods that are executed after the memory for an object is allocated,
but before the object is ready for use. We also said that if no
constructors are defined, the system will provide one for you. Now,
what would happen if there was a constructor, but it was not
accessible, i.e. not public. Well, an object of that class would not be
able to be instantiated, because a critical part of the instantiation
process would be inaccessible. Thus, when you define a private
constructor in a class, you will not be able to instantiate that class.
This has a very different meaning from defining abstract methods in a
class. In this case, your class definition is complete, i.e. your class’
methods are fully implemented – you just don’t want anyone
instantiating your class. In the case of abstract classes, the class
definition is incomplete, as you do not have full implementation for all
the methods of your class (which is why it is an abstract class).

Object De-initialization
An object has a finite lifetime. This lifetime starts when it is create
and ends when it is destroyed. Different systems manage object
destruction differently. However, there are similarities. Memory that
was allocated for the object needs to be reclaimed. In some cases,
dynamic memory was allocated for a particular object, i.e. “inside” an
object. This dynamic memory has to be de-allocated.

As with constructors, destructors are also provided by default, for
cases where a destructor has not been explicitly defined. As with
default constructors, though, default destructors do not handle de-
allocating dynamically allocated object memory well. In fact, using
default destructors in these instances will typically leave this memory
behind, thus causing a memory leak.

More recent languages provide “garbage collection” to help with object
destruction. Languages such as Java and the Microsoft .Net family,
have mechanisms in their platforms that keep track of objects using
reference counting, i.e. the keep track of the number of references to
an object. Once the number of references to an object reaches zero,
the next time the garbage collection process executes, this memory
allocated for this object can be returned to the heap. Languages such
as these do not provide explicit destructors the same way as
languages such as C++ do. They provide a language and/or platform
features that allow you to call or implement methods that help you

 111 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

deallocate dynamic memory used by the object, but such methods do
not deallocate the memory used by the object itself at that time. Such
mechanisms are quite helpful in preventing memory leaks. However,
they are not foolproof, so care must still be taken with dynamic
memory allocation in objects.

Objects and Access Levels
As we’ve mentioned before, classes provide the blueprints for objects.
Classes also define levels of access. Objects, being instances of
classes, are constructed based on these blueprints and also adhere to
the access levels. Thus, the examples outlined last chapter (for public,
private and protected access), apply to the objects of those classes as
well. In fact, the access levels defined in the class, i.e. at design-time,
are meant to control the interaction between the objects at run-time.
Each of the diagrams presented above would also be able to reflect
these constraints.

Class-Object Relationships
Earlier, we introduced class hierarchies, i.e. inheritance, aggregation,
composition and association. Let us revisit aggregation and
composition. Both aggregation and composition are examples of the
“has-a” relationship. In both cases, the class that is the aggregation
or composition has objects of other classes as its member variables (in
addition to other member variables as necessary). This means, at
design time, your class (i.e. the aggregate or composite) will already
be demonstrating object interactions, even though we would expect
object interactions to occur only at run-time. As a result, classes that
are aggregations and compositions exhibit class-object interactions,
because the class (the aggregate or composite) is interacting with the
objects it is an aggregate (or composite) of.

Objects and Inheritance
Last chapter, we discussed inheritance and polymorphism. Let’s look
at an object’s structure to determine how inheritance and
polymorphism work.

Earlier, we said a new class introduces a new data type to the
compiler. All objects are instances of a class. This means, each object
is of a specific type also. The type of an object is the class of which it
is an instance. What about objects of a subclass? What type are
they?

Object-Oriented Analysis and Design 112

X52.9267-001 Not for Commercial Use

In inheritance hierarchies, subclasses are related to superclasses by
the “is-a” relationship. If we take “is-a” a step further, we see that
this will have an impact on what the type of a subclass’ objects are.
Each object of a subclass will have that subclass as its type (as
above), but, in addition, will also have that subclass’ superclass as its
type also. In general, the object of a superclass will also have that
subclass’ superclassses as types, as many as there are.

The structure of the object of a subclass will then also include all of the
elements of that subclass’ superclass, even those that are not public.
This is true, because, the “is-a” statement would not be true if we left
some parts (that were defined in the superclass(es)) out of the object.
Everything is included, because that is the definition as described by
those superclasses. Let’s say the diagram below represents an object
of the superclass in this example:

Fig 5.1: Superclass object representation

Then, an object of the subclass could be represented by this diagram:

Fig 5.2: Subclass object representation

As the diagram indicates, the definition of the superclass is “included”
in the definition of the subclass (via inheritance). As such (also
indicated by the second diagram), the object of the subclass is actually
of two types, as outlined earlier – the subclass itself, and the type of
its superclass.

 113 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

In the previous chapter, we looked at polymorphism. The mechanism
we’ve outlined above is actually what allows us to utilize polymorphism
to our advantage in our programs. It is the fact that each subclass
object is its own type, as well as the type(s) of its superclass(es) that
allow us to use references and/or pointers of a superclass (base class)
type to manipulate objects of a subclass type. This is possible because
each subclass object “is-a” superclass object as well – so there is a
“type equivalency” between the superclass and subclass types. As we
mentioned earlier, if any part of the superclass’ definition was omitted
in the construction of the subclass object, the “type equivalency”
between superclass and subclass types would not be correct.

Subclass Initialization
From the diagrams and discussion, we know we need to have a
“complete” superclass object in order to have a valid subclass object.
Earlier in this chapter, we saw how we can use constructors to enforce
a class’ semantics. Might these superclass constructors affect the
creating of subclass objects? Absolutely! We need to adhere to these
rules to create superclass objects, and without valid superclass
objects, we will not have valid subclass objects.

Many languages provide elements that allow us to call an immediate
superclass’ constructor from inside a subclass’ constructor. In many
cases, such a call must be the first executable line in the subclass
constructor. This allows the superclass “part” of the subclass object to
be created properly, i.e. adhere to the rules, during the subclass
object’s construction process. Here is an example:
//C# syntax
// Superclass 2DPoint
public class 2DPoint{
 int x,y; //represents 2-dimensional point in space

 public 2DPoint(int x, int y){
 this.x = x;
 this.y = y;

}
}

Object-Oriented Analysis and Design 114

X52.9267-001 Not for Commercial Use

//Subclass 3DPoint
public class 3DPoint : 2DPoint{
 int z; //represents 3rd dimension in space

 public 3DPoint(int x, int y, int z){

base (x,y); //in Java, this would be:
//super(x,y);

 this.z = z;

}
}

In this example, 2DPoint objects must have x- and y-coordinates at
time of instantiation. Since the 3DPoint class inherits from the
2DPoint class, in order to have a 3DPoint object, we must have
created a valid 2DPoint object. So, the call to base(x,y) in this
example, ensures that we have a properly constructed superclass
object (2DPoint) before we continue initializing the 3DPoint object.

Object Interactions and Relationships
At run-time, a system’s functionality is provided by all of the objects
and their associated interactions. It is important to be able to
represent this aspect of the system. The diagrams we have reviewed
thus far are not capable of capturing a system’s run-time behavior.
The diagrams we have reviewed thus far capture static views of the
system. In fact, we need entirely new diagrams to model this
behavior.

Modeling Object Behavior at Run-Time
What behavior are we trying to model? From the discussions earlier in
this section, we saw that objects have distinct lifetimes, i.e. they are
created (instantiated), provide some functionality while they exist and
are then terminated. During their lifetimes, objects communicate with
each other. As before, in an object-oriented system, the operation of
the system is based on the cooperative interaction of objects. Objects
communicate via messages. A message is a method invocation. So, if
I have two objects, A and B, then A passes a message to B if A
invokes a method of B. Likewise, B passes a message to A if B
invokes a method of A. This demonstrates possible links between
objects A and B. In addition, at any given point in time, objects have
states, i.e. the value of the object’s attributes.

 115 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

We use class diagrams to represent the static elements of a system.
These static elements are the classes that form the blueprints of all of
the objects in the system. We need to model the dynamic elements of
the system. This will be from a more “real” perspective.

The dynamic elements of the system include the following scenarios:
We need to model the objects of the system at a particular point in
time (instances in time).

We need to model how groups of objects collaborate in some behavior,
i.e. the behavior of a single use-case. We need to model the objects
and the messages that are passed between these objects within the
use-case (interactions).

To model the objects of the system at a particular point in time, we
use object diagrams (also called instance diagrams). These diagrams
represent each object and the messages that are passed between
them at some discrete point in time.

To model how groups of objects collaborate, we use interaction
diagrams. In UML, there are two types of interaction diagrams –
Sequence and Collaboration.

Sequence Diagrams
Sequence diagrams are useful for modeling how groups of objects
proceed, over time, to provide the functionality required by (or to
satisfy) a particular use case. As mentioned earlier, a use case is a
description of a particular usage scenario. Sequence diagrams focus
on the sequence of method calls, rather than the relationship(s)
between the objects involved (see Collaboration Diagrams below).
The Sequence diagram allows you to see the functionality provided by
methods in each object participating in the use case.

Object-Oriented Analysis and Design 116

X52.9267-001 Not for Commercial Use

Object1 Object2 Object3 Object4

Message1()

Message2()

Message3()

Message4()

Message4()

Message2()

Message3()

Message1()

Object5Message4()

Object lifeline

Method call

Method return

Fig 5.1 UML Sequence Diagram

Let us review the elements of the diagram above. The boxes at the
top of the diagram represent objects. We use this diagram to
understand sequence in which methods of these objects are called as
they collaborate in order to satisfy some functionality (described by a

 117 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

use case, for example). From each object downward is a dashed line.
This line represents the “lifeline” of the object, i.e. the time during
which the objects exist (lifetime), in the context of the functionality
we’re reviewing. Between lifelines, we see arrows. Each arrow
represents a message sent between objects (method call). On each
lifeline, there are narrow rectangles that. Each arrow (message)
extends between two narrow rectangles. Each rectangle shows the
“activation time” of an object. They show the time it takes for each
method to complete.

Implicitly, at the end of the method, there is a return to the calling
object. However, the sequence diagram can be drawn to include
explicit return calls to the calling object. These explicit returns are
depicted by dashed lines, in the opposite direction to the method call.

Sequence diagrams can also depict asynchronous method calls
(synchronous by default). In the case of asynchronous calls, instead
of a “full” arrowhead, a “half” arrowhead is used for each “half” of an
asynchronous message.

Object-Oriented Analysis and Design 118

X52.9267-001 Not for Commercial Use

Collaboration Diagrams
In addition to Sequence diagrams, we may also use Collaboration
diagrams to describe how a use case is satisfied. Collaboration
diagrams focus on the way several objects collaborate (i.e. work
together) to accomplish some unit of work. They focus on the
relationships between objects to a greater degree than the sequence in
which the methods on those objects are called. These diagrams also
make it easier to reconcile the activity depicted with the class
diagrams (static model) representing the system.

A Collaboration diagram shows the interaction between object via
numbered messages. With this diagram, the sequence of interactions
is not as easily evident as in the Sequence diagram, but we are able to
see, via the spatial layout, how the objects are linked together. UML
uses a decimal numbering scheme to make it clear which operation is
calling which other operation, though it makes it harder to absorb the
overall sequence.

 119 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

1:
 M

es
sa

g e
 1

1:
 M

es
sa

ge
1

Fig 5.2 Annotated UML Collaboration Diagram

Let us decipher what the diagram above depicts. Each rectangle is an
object. The lines between the objects in the diagram are links that
represent relationships (association, aggregation or composition)
between objects. The arrows indicate method calls and their
respective directions. The numbers associated with each arrow
indicates the sequence in which the methods are called. They can be
grouped, using the “.” (dot) notation to show which methods are called
from within method calls.

Object Diagrams
In general, to view the objects of our system at a particular point in
time, we can use generic “object” diagrams, also referred to as
instance diagrams. Object diagrams show the interactions between
objects, without describing the sequence in which the messages occur
or describing the messages. So, an object diagram describes an
example configuration of objects. An example of an object diagram
follows.

Object-Oriented Analysis and Design 120

X52.9267-001 Not for Commercial Use

Object1

Object2
Object3

Class1

Class2 Class3

1

1

1

1

Given this class diagram:

An example object
diagram is as follows:

Fig 5.3 UML Diagrams

 121 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

State Diagrams
The state of an object is the value of its data attributes (fields, etc.) at
a given point in time. To capture the objects’ states visually, we use
state diagrams. State diagrams allow us to see how the object reacts
to various messages over time.

Unlike the previous diagrams, we use state diagrams to really put the
focus on how one object’s data values change over time. If the data in
an object is private, the object’s data will only change in response to
its public methods being called. Thus, each individual state of the
object would be caused by one or more method calls.

Each state of the object is something that is determined by you, the
designer. Each state (i.e. value of the data in the object), may be
given a name to be easily identified. A simple example of a state
diagram follows.

Each state (represented by the oval) is a particular state of an object
as a particular point in time. As a result, a state diagram is used to
depict various states of an object (one per diagram) and the
messages, conditions, etc. that cause states to change (transitions),
as the object moves from the initial state to the final state.

Object-Oriented Analysis and Design 122

X52.9267-001 Not for Commercial Use

State1 State2 State3

Simple state diagram

Initial state

State Transition

Final state

Fig 5.4 UML State Diagram

Static vs. Dynamic Modeling
Static models, i.e. class diagrams, do a great job of describing the
overall structure of a system’s classes. They are termed “static”
because this structure cannot be changed during execution. It is fixed
during the analysis and design phases of development. So, while the
number of objects in existence may vary over time, the structure of
each object, regardless of how many there are, will not change while
the program is running.

It is clear, that static models do not provide a clear understanding of
how a system will behave, while it is running. We have to find another
perspective for views of the system while it is running. This is what
dynamic modeling allows us to do.

 123 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Sample Project
Our list of abstractions is now as follows:

Typical Student
Faculty Student
Transfer Student
Home College
Name
Address
Subject
Major
System
Student Majors
Student Subjects
All Majors
All Subjects
All Students

We know have to describe all of the attributes (and methods) for each
of our abstractions. In doing this, we may realize that we have to
make changes to our list of abstractions. Let’s also begin by making
all classes’ attributes private. This implies that we have to define
public accessor methods for each class. I will include these accessor
methods below as well.

Class Typical Student

Attributes:
Student Name (Object of class Name)
Student Address (Object of class Address)
ID
Majors (Object of class Student Majors)
Subjects (Object of class Student Subjects)
Grade
Discount

Methods:
GetStudentName()
SetStudentName()
GetStudentAddress()
SetStudentAddress()
GetStudentID()

Object-Oriented Analysis and Design 124

X52.9267-001 Not for Commercial Use

SetStudentID()
GetStudentMajors()
SetStudentMajors()
GetStudentSubjects()
SetStudentSubjects()
GetStudentGrade()
SetStudentGrade()
GetStudentDiscount()
SetStudentDiscount()

Class Faculty Student

Attributes:
All attributes of Typical Student
Subject Taught
Date Employed (Start of employment - used to calculate length of
service)

Methods:
All methods of Typical Student
GetSubjectTaught()
SetSubjectTaught()
GetDateEmployed()
SetDateEmployed()

Class Transfer Student

Attributes:
All attributes of Typical Student
Home college (Object of class College)

Methods
All methods of Typical Student
GetHomeCollege()
SetHomeCollege()

Class Home College

Attributes:
College Name
College Address (Object of class Address)

 125 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Methods:
GetCollegeName()
SetCollegeName()

Class Name

Attributes:
First Name
Middle Initial
Last Name

Methods:
GetFirstName()
SetFirstName()
GetMiddleInitial()
SetMiddleInitial()
GetLastName()
SetLastName()

Class Address

Attributes:
Street Address
City
State
Zip

Methods:
GetStreetAddress()
Set StreetAddress()
GetCity()
SetCity()
GetState()
SetState()
GetZip()
SetZip()

Class Major

Attributes:
Name_of_Major

Object-Oriented Analysis and Design 126

X52.9267-001 Not for Commercial Use

Methods:
GetMajor()
SetMajor()

Class Subject

Attributes:
Subject Name
Credits

Methods:
GetSubjectName()
SetSubjectName()
GetCredits()
SetCredits()

Class System

Attributes:
Majors (Object of class All Majors)
Subjects (Object of class All Subjects)
All Students (List of objects representing all types of students)

Methods:
GetMajors()
SetMajors()
GetSubjects()
SetSubjects()
GetStudents()
SetStudents()

Class Student Majors

Attributes:
Majors

Methods:
GetMajors()
SetMajors()

Class Student Subjects

Attributes:

 127 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Subjects

Methods;
GetSubjects()
SetSubjects()

Class All Majors

Attributes:
Majors

Methods:
GetMajors()
SetMajors()

Class All Subjects

Attributes:
Subjects

Methods:
GetSubjects()
SetSubjects()

Class All Students

Attributes:
Students

Methods:
GetStudent()
SetStudent()

Let’s assess where we are so far. We’ve discussed attributes and
accessor methods. Let’s discuss the other methods we need, per the
requirements.

From the requirements, we see that we have to provide the following
functionality:
1. Adding a new student’s information
2. Searching and displaying a student’s information
3. Deleting a student
4. Changing/assigning classes and credits to students
5. Changing/assigning a student’s major

Object-Oriented Analysis and Design 128

X52.9267-001 Not for Commercial Use

6. Changing/assigning a student’s type
7. Changing/assigning a student’s status, i.e. full-time or part-time

according to the rules above
8. Producing reports as follows:

Sorted list of full-time students (all information)
Sorted list of part-time students (all information)
Number of students of each type (typical, faculty and transfer)
For each type of student, a sorted list of student names and
addresses
For each type of student, a reversed list of student names and
addresses
List of all students, their majors and number of credits
A sorted list of all students based on their cost for the semester

We will refine our design in the next chapter.

 129 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary
• An object is a structure containing methods and data.

• Each object gets its own copy of an instance field.

• All objects in a class share one copy of a class field.

• Objects are initialized using a specialized method called a

Constructor.

• Objects are destroyed using a specialized method called a
Destructor (depending on language - not always available).

• Object behavior may be captured at runtime using UML

Sequence diagrams, Collaboration diagrams and State diagrams.

Object-Oriented Analysis and Design 130

X52.9267-001 Not for Commercial Use

Exercises

1. Give an example of situation where class fields (as opposed to
instance fields) would be required.

2. What changes the state of an object?

3. How do objects collaborate at run-time?

4. What aspects of a system do class diagrams capture?

5. What aspects of a system do object diagrams capture?

 131 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 6

Designing with Classes and Objects
Design is primarily a refinement of the analysis model. It incorporates
non-functional requirements of the system and the constraints of the
environment to transform the analysis model into something that can
be coded. Design must anticipate and factor in issues such as memory
constraints, exception handling consistency, scalability, etc.

Design is where the requirements, as abstracted by the activities in
Analysis, head toward being made real and concrete (i.e.
implemented). We refine the models from Analysis, as required. In
Design, models are produced as well to augment those produced in
Analysis. The models depict aspects of the system that are real, not
abstract. In addition, these models can be directly implemented in
code.

In this chapter, we will continue exploring the object oriented design
process using the tools and concepts we’ve discussed in the previous
five sessions. In addition, we will look at popular abstractions that we
can use in developing our design.

We will also discuss the elements of good system design. We will
concentrate on the elements of good class design, as this activity is
the cornerstone of good object-oriented system design. This will also
allow us to benchmark where we are in our course example, to make
sure we’re on the right track. We will look at various aspects of
design, patterns, elements, guidelines and metrics.

Overview
To effectively design object-oriented systems, we must grasp the
relationships between our design strategies, language constructs and

Object-Oriented Analysis and Design 132

X52.9267-001 Not for Commercial Use

the software engineering goals the combination of these is meant to
achieve. After all, there is a reason why we choose to do object-
oriented development in the first place.

In order to design anything, we must first have a solid understanding
of what problem we are trying to solve (what) and the methodology
we will use to solve it (how). These sound almost trivial, but they bear
repeating as a solid understanding of these two elements early will
allow you to avoid costly pitfalls later.

Design Guidelines
In object-oriented design, our fundamental building blocks are classes
and objects. Classes are the static structures created at “design-
time”. At run-time, its the objects that are collaborating to provide the
functionality of the system. Objects are dynamic. They exist at
runtime and are created dynamically.

In order to have a good object-oriented design, we must:

• Determine what the classes and objects will be. This is
accomplished by performing the two steps below:

o Identify the data to be contained in each class. This may
be accomplished using the techniques outlined in Chapter
two.

o Determine the operations to be defined on each class. As
before, it is an iterative process.

• Identify any hierarchical relationships between the classes and
objects.

• Define which operations will comprise the class’ interface, i.e.
public methods.

These steps are part of an iterative process. How do you know you’re
done? You’re done when you cannot make any more meaningful
refinements to your list of classes. You will find that they will need to
be repeated as necessary. It is unreasonable to expect perfection the
first time through. In addition, there may be additional classes that
are not immediately evident from the requirements but which are
discovered as a result of the analysis and design.

Some of the changes that may arise as part of these iterations may
have greater effects than others depending on whether the action is a
change to a public area of the object or to a private area of the object.

 133 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

The architecture of an object-oriented system encompasses its class
and object structure. This structure is essential to constructing a
system that is understandable, extensible, maintainable and testable.
According to Grady Booch37, good software architectures tend to have
several attributes in common:

• They are constructed in well defined layers of abstraction, each
layer representing a coherent abstraction, provided through a
well-defined and controlled interface and built upon equally well-
defined and controlled facilities at lower levels of abstractions.

• There is a clear separation of concerns between the interface

and implementation of each layer, making it possible to change
the implementation of a layer without violating the assumptions
made by its clients.

• The architecture is simple: a common behavior is achieved

through common abstractions and common mechanisms.

The idea behind object-oriented design is to create a set of models
that identify and use real-world elements and represent them by
programming language elements. This is made possible by the
programming language’s ability to support the fundamental elements
of object-oriented development
.
From what we’ve seen, the process involves identifying these classes
and objects and then building the system based on the collaboration of
these elements. Thus, object-oriented design is a way of designing a
system based on classes and objects.

Object oriented design is based on the notion that a program is better
if it more closely “resembles” the elements in the problem domain. By
“resembles” we mean uses language from the problem domain and
uses abstractions based on (i.e. representing) elements in the problem
domain (real world).

Let’s restate what we’ve seen so far: In object-oriented design, we
have various tools and methods at our disposal that were not available
to us (at least not in the same way) with structured programming. We
have object-oriented elements (abstraction, encapsulation, hierarchical
relationships, modularity and persistence) that we can identify and

37 Object Oriented Analysis and Design with Applications, 2nd Edition, Benjamin/Cummings Publishing
Company, 1994

Object-Oriented Analysis and Design 134

X52.9267-001 Not for Commercial Use

leverage. Let us look at how leveraging these elements will help us
create better programs.

Abstraction
Abstractions (via abstract data types, classes, etc.) are valuable tools
for reducing the overall complexity of a problem. They allow you to
write your program in layers and to write the program in terms of the
problem domain, rather than in computer science terms. We can use
abstraction to create programmatic elements that represent real-world
elements.

With abstraction, we can focus on the important details and ignore
information that is not relevant to our solution. If you had to focus on
every last detail of information all the time, you would accomplish
nothing. Abstractions are used as representations of real-world
objects, as discussed in Chapter 2.

The objects that you will identify and design will typically fall into a few
categories. You may design objects that represent the elements of the
problem domain that directly represent some aspect of the problem
and are most likely to be named after the element in the problem
domain.

Other objects will represent user-interface elements. This includes
windows, dialog boxes, buttons, scroll bars, etc. Nowadays, most GUI
(Graphical User Interface) elements are presented as objects, part of
an object-oriented framework. Microsoft Foundation Classes (MFC)
and AWT/Swing are examples of GUI frameworks that present GUI
elements in this way.

Some objects will possibly be dedicated to management of specific
tasks. This may include objects representing lower-level system
elements, possibly hardware interfaces, etc. However, these may also
include objects that provide other relatively low-level services.

Some objects may be dedicated to data management. These objects
would include abstractions used to represent legacy data of whatever
format. This group would include the objects that user to integrate
these data sources into our object-oriented system.

Refining Class Selections
In designing a system, the correct abstractions must be selected. This
is obvious. But, how do we know we have selected the correct

 135 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

abstractions? Once we have candidate abstractions selected (before
they become key abstractions), we should focus on the following
questions, for each abstraction:

• Will objects of this class be created?
• How are objects of such a class created?
• What are the semantics of the class?
• Can objects of such a class be copied and/or destroyed?
• What is the behavior of objects of such a class?
• How will objects of the class be persisted?

The review of answers to questions such as these will sometimes
instantly disqualify candidate classes from consideration. Indeed, if
these questions cannot be answered satisfactorily, then the selection
needs to be revised38.

In answering these questions we also have to consider the following:

• Decide the “level of abstraction”
o Have objects interact at the same or similar levels of

abstraction
o Try to be uniform
o Employ abstraction to present a consistent object interface

• Static methods

o Decide what should be static, what shouldn’t

Viewing Your Classes from Another Perspective
Once we think we have a good set of candidate classes that exist after
we’ve weeded out the rest, we need to evaluate our abstractions from
another perspective. In performing the iterations outlined above,
we’re primarily looking at classes from the standpoint of the way
objects of one class will interact with objects of other classes. This
perspective gives us an understanding of how each class’ objects will
“fit” into delivering the functionality of our system.

There are however, other perspectives that we can take at this point in
our design, to look at the quality of the structure of our classes and
also how their objects will interact. Of necessity, this step must occur
after you’ve gone through enough loops to make you feel somewhat
comfortable with the classes in your design. If done too soon, you risk

38 Remember, the process is iterative, so all of these questions do not have to be answered immediately.

Object-Oriented Analysis and Design 136

X52.9267-001 Not for Commercial Use

throwing away the effort if you decide to exclude a class from your
system.

This perspective will give us valuable information regarding the
“quality” of our abstractions. There are things we can look for that are
related to the structure and content of our classes, in addition to the
interaction between objects of the classes. Lets start with structure
and content.

Structure and Content Quality
In looking at the structure and content of our classes, there are a few
questions we want to ask, as follows:

1. How strong is any connection from one class or object to
another?

2. Are the methods defined in each class relevant to the stated
behavior and semantics of the class?

3. Given the expected behavior and the semantics of the class, are
there enough methods to allow this behavior to be realized?

4. Given the expected behavior and the semantics of the class, are
there enough methods to give appropriate access to the data in
the class and/or to make the class “complete”?

5. Are the methods named appropriately, according to some
convention and/or indicative of their purpose?

6. Are the methods and data defined with the appropriate access
levels given the semantics of the class?

1. How Strong is any Connection From one Class or Object to
Another?
In answering this question, we’re trying to identify the degree to which
a class is coupled to another class. We’re trying to measure the
strength of association established by a connection from one class or
object to another. Classes may be exhibit strong or weak coupling.

Strong Coupling
Strong coupling complicates a system, since a module will be harder to
understand or modify by itself, thus adding to the overall complexity of
the system. An inheritance structure is a tightly coupled structure,
whereas a hierarchy based in aggregation is loosely coupled. The
inheritance structure is tightly coupled as any change to a superclass
is automatically propagated to all subclasses.

Weak coupling
Aggregation is weakly coupled as you are able to make changes to an
individual element’s class (object) that is part of the aggregation,

 137 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

without affecting other elements, such as the containing abstraction
itself.

2. Are the Methods Defined in Each Class Relevant to the Stated
Behavior and Semantics of the Class?
This question illustrates an important query. In designing a class, we
should strive to include only methods and data that are relevant to the
behavior of objects of the class, and the semantics of the class. The
naming of the class itself will be critical to making sure you have
relevant members in the class. The name of the class implies what
the class is all about, i.e. what objects of the class will be able to do.
The name of the class reflects its semantics. So, to determine
whether you have relevant methods and data elements in a class, you
have to start with what the class represents and what its name is. You
want to identify the measure of the degree of connectivity among the
elements of a single class or object. Entirely unrelated elements of
abstractions should not be placed together in one class. Unrelated
behaviours should not be captured in the same class. A class’
responsibility should be easy to determine. Any ambiguity in the
interpretation of a class’ responsibility should be taken as a signal that
the class is implying something other than the designer intended. This
will ultimately be confusing to the class’ users. The responsibilities of
the class should make sense overall. They should not go beyond the
responsibilities implied by the abstraction. Otherwise, the true
responsibilities will be obscured by the additional “noise”. Thus, in a
class named Cat, we shouldn’t have a method called Bark().

3. Given the Expected Behavior and the Semantics of the Class,
are There Enough Methods to Allow this Behavior to be
Realized?
It won’t make much sense for you to pick the “correct” abstractions,
then “under-implement” the classes. You want to make sure that you
include all methods necessary to make the object’s functionality
available to other objects in your solution. So, you need to review
whether or not a class or module captures enough of the
characteristics of the abstraction to allow meaningful and efficient
interactions. The responsibility of the class should capture completely
those responsibilities implied by the abstraction. Again, this also
comes from the responsibility of the class. If you decided a class was
to be responsible for some piece of your system’s overall functionality,
make sure you give it the tools (methods, data) to do so.

Object-Oriented Analysis and Design 138

X52.9267-001 Not for Commercial Use

4. Given the Expected Behavior and the Semantics of the Class,
are there Enough Methods to give Appropriate Access to the
data in the Class and/or to make the Class “Complete”?
Your class definition should include enough methods to provide a
“complete” interface. This includes defining public accessor methods
for private data where that data needs to be obtained by other
objects, as well as defining methods for all of the meaningful
functionality as implied in the name of the class. You should identify
whether the interface of your classes capture all of the meaningful
characteristics of their abstractions. You should ensure that the
responsibility of each class completely captures that implied by the
abstraction.

5. Are the Methods and data Elements Named Appropriately,
According to some Convention and/or Indicative of their
Purpose?
As mentioned earlier, the interface of a class (object) is the only thing
that will be visible from outside the class itself. So, a class should
have a well-designed interface. The interface is critical as well-defined
interfaces can also contribute to reuse. The methods should be clearly
named, with the name describing the operation effectively and
unambiguously. Different methods should have different names,
except for overloaded methods). Care should be given to parameter
names also.

The class definition should also include offsetting methods. This
means if there is a method Get(), there should be a corresponding
method Set(), unless there is a clear design reason why either should
not exist.

We should also strive to have “primitive” operations. This means we
should try to eliminate operations that only group other operations,
unless there is a particularly good reason for doing so. There will be
occasions where you need to alias functions to maintain backward
compatibility, for example. However, these should be explicit
decisions, not accidental ones. You should review the degree to which
the operations of your classes can be efficiently implemented if only
given access to the underlying representation of the abstraction.
As designers, we can utilize overloading to give clarity to our design.
With overloading, we can reuse of operations’ names with different
signatures. This can provide easier use of the design and overloading
provides flexibility to the interface.

 139 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

The use of naming standards for methods and data elements can go a
long way to clarifying the purpose and scope of class members, as
long as there is consistency in the use of the convention.

6. Are the Methods and data Defined with the Appropriate
Access Levels Given the Semantics of the Class?
We know, from earlier chapters, that we have the ability to decide
what members are public, private or protected. But how do we know
which member should have what access level? We know by basing our
decisions on the semantics of the class and the responsibility of the
class. As you look at what the functionality of classes is, you also
have to look at which objects of other classes will interact with each
other. This interaction will indicate which methods need to be public,
as the public methods of a class (object) provide external access to
the functionality of the class.

Identifying Class Relationships
Thus far, we’ve looked at abstraction with an eye to seeing if they are
similar. If they are similar, we can define an inheritance hierarchy
that leverages this similarity. We can do this because of the
similarities between what they are. What do we do if there is no such
similarity forthcoming? One idea is that in addition to what thing are
in common, we can look at what they do in common. So, we can
create relationships based on actions, not just based on structure. By
looking at a set of abstractions from this perspective, we are able to
identify potentially valuable relationships.

Encapsulation
With encapsulation, we can take the individual objects based on our
abstractions and hide how those objects are implemented. This means
we can separate the interface of an object from the implementation of
that object. So, if an abstraction represents a higher level of detail,
encapsulation prevents inspection of the “lower” level details of the
object that is based on that abstraction, i.e. how it is implemented.
This also gives the designer freedom to change or improve the
implementation of an object without affecting the users of the object.

In reality, encapsulation hides how an object’s operations (methods)
are implemented (information hiding). All the user of the object is
aware of, if the operation is part of the object’s interface, is the name
of the operation, what parameters it expects and what it returns.
Indeed, this is all they need to be aware of at this level of detail.

We exploit encapsulation for many reasons. This is a double-edged
sword. Along with the benefit of encapsulation comes the

Object-Oriented Analysis and Design 140

X52.9267-001 Not for Commercial Use

responsibility of designing a good interface for the class. Great care
should be taken when deciding which methods should be public (see
above).

The issue does not stop with the public operations, however. We have
to decide which elements should be made protected and private as
well. We should make any operation that is never called directly from
the “outside” private. If no client directly invokes the operation, it
may not need to be included in the interface. This requires further
clarification, as we do not want to be shortsighted. If this scenario
arises, two things may be going on. If an operation is only invoked
internally, then we have to decide if it should be private, or if we have
a case where our interface is not primitive enough. If we are able to
remove the operation that invokes the one we are looking at, without
a loss of functionality that is an option we might take. This is an issue
of encapsulation that has an impact on our discussion of hierarchy as
well. Once an operation is private, it is not visible to any operations
outside of that class. If you decide your class may become a
superclass and you’d like the operations in the superclass to invoke a
particular operation, make it protected instead.

Deciding which operations should be protected is also a challenge. By
giving an operation this level of visibility, we are laying the foundation
for the operation to be used by subclasses of the class we are
designing. Given that we may be planning for a hierarchy that doesn’t
necessarily exist, we need to look objectively at the semantics of our
abstraction. Depending on our abstraction, we need to identify those
operations that may need to be modified if this abstraction was to
eventually become a superclass. Keep in mind that this level of
visibility makes it possible for subclasses to invoke these methods, but
for all other classes, it is the same as private. There should be no
conflict between operations included in the interface (public) and those
you’re deciding should be protected.

Hierarchical Relationships
When designing software systems, you’ll notice that many objects may
have much in common. They may be essentially the same, except for
differences of varying degrees. Understanding the similarities and
differences will allow the creation of a hierarchy of one sort or another.
Creating a hierarchy simplifies programming, in as much as you are
able to leverage previously designed elements and inheriting from
them and enhancing their functionality. We can leverage other
hierarchies such as association and aggregation.

 141 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Hierarchical relationships work well with Abstraction and
Encapsulation. We can visualize and create designs using elements
from the problem domain. As a by-product of Abstraction, we can also
visualize and conceptualize the relationships between elements. We
can leverage hierarchy in this way because of its inclusion in the
object-oriented paradigm. We can use Hierarchy to represent in our
abstractions, the relationships that exist in the real world.

Given a new abstraction, we must place it in the context of existing
class and object hierarchies we have designed. This involves that
incremental and iterative process mentioned earlier. As we progress
iteratively, we might change our architecture as follows:

1. Class hierarchies become reorganized. As we examine our

abstractions and their relationships, we may decide that the basis
of the hierarchy should change. This may mean changing the
superclass entirely, which has a cascading effect on all subclasses.
We may decide to add functionality to the existing superclass,
yielding a different hierarchy. Often, we will find that we have to
define a different superclass, one with less functionality, i.e. a
more granular abstraction. This may yield benefits as more
narrowly scoped classes may improve the overall level of reuse and
reliability.

2. Some classes may move up in the hierarchy. We may decide to

promote a class to take advantage of the semantics of that
abstraction in relation to the other classes in the tree. We may
need to leverage the attributes and operations defined in that class
in other classes in the tree, which would warrant promoting it.
Sometimes, a class may be too general, making inheritance
difficult. As we’ve said before, it is much better to have granular,
narrowly scoped abstractions that are closely related to the real-
world object they represent. If the scope is too large (the semantic
gap), we may have difficulties reusing the objects and reliability
may be affected.

3. We may decide to create a hierarchy where there wasn’t one to

facilitate leveraging polymorphism in our program. We may create
a superclass purely to allow this to happen.

Persistence
Depending on the functionality of our system, the ability to save and
restore the states of the objects in the system may vary from
important to absolutely critical. When we talk about saving and
restoring, what are we really saying. What really transpires is that to

Object-Oriented Analysis and Design 142

X52.9267-001 Not for Commercial Use

“save” an object, we must transform the data of the object from the
“in-memory” form to some format that can be persisted (i.e. stored)
or transmitted somehow. To “restore” an object, we have to
reconstitute the “in-memory” view of the object, so it can continue its
role as part of the functionality of our system. This may take various
forms. Some languages have built-in mechanisms that support object
persistence39. The challenge exists when we are using languages like
C++ that do not provide a direct, built-in way of implementing
persistence.

In a nutshell, we just need to save the state of an object, in order to
persist it. We can create a string-based version of the object, creating
a delimited string with all of an object’s values. This is one area in
which XML has become popular, because we can create an XML string
version of our object. This is the idea behind SOAP, the Simple Object
Access Protocol, which is a defined XML format that is used to persist
objects.

Another possibility is to save the values of the attributes of the objects
in relational databases. I’m sure if we think further, we can find many
different strategies for implementing persistence.

The other side, of course, is being able to convert from our “saved”
version of the object back to our “run-time” version of the object. We
have to implement methods to restore the value of the object. At the
end of the restoration, we have an object that is equivalent to the
object we saved.

The ability to transform an object from the run-time, in-memory
version to another version, (i.e. string, etc.) is important, not just to
“save” the state. Once we transform the state of an object in this
way, we can communicate that new state to other systems. This
means, for example, that if we can convert an object to a string, we
can communicate that string to other systems or components on other
platforms, in different locations. These other systems or components
would then have to have the ability to restore objects from the strings,
and vice-versa. Indeed, as we will see in Chapter 9, this is an
important facet of distributed computing.

39 Java is an example of such a language.

 143 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Design Goals
We utilize object-oriented software development techniques in an
attempt to improve the overall quality of our developed software. This
improved quality includes the following: reusability, reliability and
extensibility. Let us look at how some of the concepts we’ve learned
thus far apply to these goals.

Reusability
Object oriented development promotes software reuse. This reuse
typically occurs at the component, class and object level. Many of the
elements of reuse are due to the presence of hierarchy in the object-
oriented paradigm.

How can we improve reusability? The discussions in this and previous
chapters lead us to identify the following as some mechanisms we can
use:

1. Modularity
When we make something modular, we are creating a sub-program,
i.e. one or more classes. This means, if designed properly, we could
reuse this sub-program over and over again. An example of
modularity employed this way is a .dll in Windows. Many different
programs can utilize the same .dll, which can simplify the development
process.

Modularity on a grander scale comes into play when we include
distributed systems in our discussion. Distributed Systems are
discussed in Chapter 9.

Object-Oriented Analysis and Design 144

X52.9267-001 Not for Commercial Use

2. Classes and Objects
The very idea of encapsulating a certain amount on functionality in a
class facilitates reuse, if (and only if) the design of the class is correct.
This is one of the benefits you can realize when you take care in the
choice and quality of your abstractions (see above). The better the
quality of the abstraction, with regard to the semantics of the class
and the selection of methods, etc., the more likely it will be suitable
for reuse. Big, bloated classes that do too much, i.e. have too much
functionality, will not be as easy to reuse. The tighter scoped, better
defined classes will be easier to reuse by far.

3. Inheritance, Aggregation and Composition
With inheritance, we can directly leverage previously developed code.
This goes way beyond the “cut and paste” technique. Say a function is
created which copied code in a second function. We now have two
independent functions, even though they share code. Each of these
functions needs to be separately maintained. If we fix a bug in the
original function, this fix is not propagated to the second function,
automatically or otherwise. This is not a good example of code reuse.
If we look at inheritance however, we see that we can directly
leverage previously developed code in such a way that any changes to
the originally developed code (class) is automatically available to new
code (subclasses).

We can also make any class a superclass. This means we do not have
to redefine functionality completely. We can merely add to it, by
creating a subclass that has the new elements defined. It is critical
then, that our classes, in general, are well defined, so that if we need
to make them the root in an inheritance chain, their design makes
them suitable to do so.

If we look at aggregation and composition, we see other possibilities
for reuse. With these two elements of hierarchy, we can assemble
new objects from combinations of previously existing ones. This
allows us to create new loosely coupled objects, whereas inheritance
allows us to create new tightly coupled objects.

Reliability and Robustness
To describe software as “reliable”, it must be robust in how it handles
exceptional situations. An exception is a potentially severe error
condition. Reliable systems must be able to run exception handlers to
“handle” exceptional situations and recover from them. Many object-
oriented programming languages provide exception detection and
handling, greatly aiding the development of reliable software. Even
though many languages now support exception handling, using these

 145 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

techniques is not mandatory. It is not enforced directly by the
programming language. Of course, we could let exceptions go un-
handled, thereby causing our systems to crash.

What else can we do to improve the reliability and robustness of a
system by defensively trying to avoid exceptional situations? Here are
some things we can do:

• Reduce potential for problems by using “privates” for data, and
controlling access to data via methods

• Control object creation via constructors, i.e. based on semantics
and using copy constructors

Extensibility
The key to extensibility is to make sure the design is done in a
“granular” way. By granular, we mean a design wherein each class’
scope is narrowly defined, closely matching the scope of the element it
abstracts. This means selecting the correct abstractions and making
sure each is cohesive. It also means creating individual classes, the
result of the object-oriented decomposition, that are at the correct
level of abstraction. We should guard against creating classes based
on abstractions with scopes that are too large in the context of the
problem. The drawback of having abstractions that are too large in
scope is that relatively minor changes could potentially become major
system changes. If a class’ scope is too large, we potentially lose the
ability to create elegant hierarchies. It is far better to create small,
tightly scoped classes that are building blocks, than large monolithic
objects which are not only less extensible, but have less reusability as
well.

Additional Design Factors
In order for our design to be successful, there are other factors we
have to consider. These include accounting for non-functional
requirements and employing design patterns.

Non-Functional Requirements
We have to look at more than “just” the abstractions, etc. based on
the functional requirements of the system. We also have to include
“non-functional” requirements. “Non-functional” requirements include
items such as environmental requirements. For instance, these may
be items such as data center requirements that must be met before an
application is allowed to be in production in that environment. Maybe
there are special classes and/or modules that need to be included to
allow remote monitoring of the application, logging, etc. These are not
items that would be communicated by the user as part of the

Object-Oriented Analysis and Design 146

X52.9267-001 Not for Commercial Use

functional requirements, but they obviously need to be included in the
design of the solution.

Modeling
As we mentioned before, modeling allows us to present a picture, i.e.
a visual representation of our system. However, there are added
benefits of creating and using models during the design process, not
just in creating artifacts at the end. We can use modeling to improve
the design process in the following ways:

Present and validate architecture
With class diagrams, it is easier to see how elements of our system
interact with each other, i.e. the relationships classes have with each
other. We can quickly identify from the diagrams what relationships
are in place and more importantly, whether or not these relationships
are correct. This allows us to verify the overall architecture, i.e. static
structure of our system.

Model object interaction and behavior at runtime
With object interaction diagrams such as Sequence and Collaboration
diagrams, we can model how objects will behave at runtime, as they
collaborate to provide functionality. It is easy to see and verify that
the objects are providing the functionality, as expected.

To shine even more light on an individual object, we can use State
diagrams to examine individual objects greater detail.

Design Patterns
We utilize design patterns all the time. A design pattern is a
generalized sequence of steps to be used to solve a commonly
occurring problem.

Typically, patterns do not extend to specific code for a particular
solution. Instead, it presents a solution in a more general form. When
we utilize patterns, we must modify the pattern to fit our particular
problem. This may require us to supply details that may have been
missing from the original pattern.

As we gain experience and knowledge, the patterns that come from
the solutions we’ve developed are at our disposal. We can use these in
solving new problems. The presence of patterns and the ability to use
them make the solution development easier.

Patterns exist at all levels. There are large, architectural patterns such
as component-based development models, n-tiered models

 147 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

(generalization of the client-server model), layered models, etc. On a
smaller scale, patterns may represent particular programming
constructs.

For object-oriented development, patterns involve classes and objects.
The classes in the pattern represent the elements of the problem the
pattern is a solution for. The pattern captured the relationships among
the classes. These relationships are based on aggregation, inheritance
and association and are all in the context of the problem to be solved.

There are many design patterns available for us to apply to problems.
Some of the more popular patterns are listed below:

Containers
A container is a design pattern that describes a class that manages the
collection of other objects. The interface of the class provides the
expected behavior with operations to provide a count of objects,
append, delete (all or a specific object). Containers also support the
notion of GetFirst() and GetNext(), to deliver the objects of the
container in some predetermined order.

Containers are very useful abstractions to include in a design. They
may be used anywhere a collection of objects (not necessarily all from
related classes) is required. The container’s operations allow the easy
inspection of the contents.

Wrappers
In Chapter 1, we presented the notion of using an abstraction to
represent legacy systems40 with which object-oriented systems
interact41. This technique may be expressed as the Wrapper pattern.
In the Wrapper pattern, we define a set of public operations that
represent the operations of the legacy system. These operations are
the interface of the abstraction, the implementation being the legacy
system itself. Of course, with Encapsulation, this implementation
detail is hidden. The operations of the abstractions would be
implemented by making function calls to the legacy system. This
pattern is flexible enough to support object-relational interactions.

Object Factories
The Container pattern above describes a class that manages a set of
objects. If we extend this functionality to include the responsibility of

40 Non-object-oriented systems in general.
41 Discussed in detail later in this chapter.

Object-Oriented Analysis and Design 148

X52.9267-001 Not for Commercial Use

creating objects, we have the Object Factory pattern. The Object
Factory would create instance of specific classes, and in some cases,
may be extended to include management and tracking of the created
objects.

Model-View-Controller
The Model-View-Controller (MVC) pattern was introduced in the late
1980’s and has become popular as a pattern for Graphical User
Interfaces (GUI’s). The pattern separates user input, presentation and
data into separate parts. Controllers are responsible for the collection
of user inputs. The Model contains the core functionality and data of
the application. The View represents the various views or presentation
of the data (in the Model). Effectively, MVC separates data from
presentation, which fits well with client-server architectures.

Design Elements
There are various “design elements” that we’ll mention in this section.
The term “design element” is being used to describe various
structures, options and techniques that we have at our disposal.

Strategic vs. Tactical Decisions
A strategic decision is one with sweeping architectural implementations
–i.e. one with large consequences across the design. Strategic
decisions affect the long-term view of your system. Strategic
decisions are based on a full understanding of the requirements, an
understanding of the environment in which the system will operate
and expectations about the evolution of the system42. At its most
basic, strategic decisions will affect which abstractions become key
abstractions. By thinking strategically, we will try to find a “best fit”,
among all of the attributes such as reuse, reliability, etc. Our strategic
view will be helped by having properly scoped abstractions.
Depending on your overall strategy43, changes to a class’ behavior (i.e.
functionality), error-handling mechanisms (exception handling), etc.
are examples of strategic decisions.

A tactical decision is one that is more localized, i.e. has fewer
consequences. “One-off” decisions or decisions about a particular
algorithm to implement a method are tactical decisions. Earlier, we
said that encapsulation hid the implementation and we could safely
implement a specific algorithm for a sorting operation, away from the

42 Many other factors affect strategic decisions. The platform(s) for deployment, databases, planned
upgrades/new features. There are usually a host of environmental issues that must be considered also.
43 It is important that there is one that governs the development effort.

 149 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

view from outside. The selection of a particular sorting operation
could be a tactical decision, as its effects may be localized.

Additional Considerations
When designing a system, there are many additional considerations
that we must take into account.

Designing for Interoperability
Interoperability is the ability of systems to communicate, i.e. to
interoperate. As requirements become more complicated, we have the
need to leverage data owned by other systems. These other systems
may be databases, mainframe systems, client-server systems, object-
oriented systems, web systems, etc. If we are designing an object-
oriented system, how do we account for these systems, especially the
non-object-oriented? Strictly speaking, there is no “simple” solution.
There are however, certain “patterns” that we can follow44. The
approach selected depends on which environmental issues are to be
addressed.

Relational Databases
One scenario might be to communicate with relational databases45.
This may be because there is important data already stored in existing
databases, on various platforms. There are a few approaches we can
take to integrate this data into our system. We may create an
abstraction to represent the entire data store. This means, there
would be one abstraction representing a database. An alternate
approach is to include operations in exiting abstractions that represent
the operations on the database46.

 If we choose the approach of one abstraction representing the
database, we have to decide how to implement the operations of this
class, given the scope of the abstraction. We have to be careful about
which operations we include in our interface. Obviously, if we interact
directly with the database, we have the full capability of SQL at our
disposal. This would not be the most elegant solution. In this case,
the operations would be highly dependent on SQL. Though it seems
easier to implement such a “pass through” interface, it may limit
flexibility, as we’ll see.

44 See previous discussion of Design Patterns in this chapter.
45 Non object-oriented.
46 We are ignoring details such as libraries and infrastructure used to communicate with the database
management system. For the purpose of our discussion, we are assuming these exist. These issues are at a
lower level of abstraction than our discussion.

Object-Oriented Analysis and Design 150

X52.9267-001 Not for Commercial Use

We could, instead, determine which operations on the data are
required. For example, we can determine the necessary queries,
updates, deletions, insertions. If the system is of even marginal
complexity, there may be many of these database operations that are
required. We would have to determine how to present these
operations in the interface of our class. A particular business
operation might include a combination of these operations, in addition
to supplying parameters to the operations. The business operations,
which may or may not correspond directly to each of the database
operations, may define the public operations in our abstraction.
Indeed, some combination of these would comprise the interface of
our class.

If we construct the abstraction as immediately above, we have a few
advantages. For example, all of the details of the database are
ultimately hidden as the implementation details of the class. This
means, the database could be replaced or changed radically, with no
impact on the other classes, unless the interface(s) are changed as a
result.

What about attributes and private or public operations (for either
case)? The need for these would be determined based on what the
complete functionality of the class is.

Legacy Systems
We can employ a similar strategy to integrate relational data into
object-oriented systems. In general, we may create abstractions that
represent the other systems. The operations that we define on the
abstraction would correspond to the operations that we need to
execute in the other system.

 151 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

+operation1()
+operation2()
+operation3()
+operation4()

-attribute1
-attribute2
-attribute3

DatabaseClass

+operation1()
+operation2()
+operation3()
+operation4()

«interface»
Database_Interface

Database

Represents

Implements

Fig 6.1 Database Abstraction

In practical terms, there are many issues to be addressed when we
talk of integrating disparate systems. We have to consider factors
such as what platforms the systems are on, what infrastructure exists
between systems, i.e. communication, protocols, etc. What we need
is a set of services that would allow us to communicate effectively
between systems, across processes and platforms. Effectively, these
services allow us to distribute the overall processing across many
platforms, even though these platforms may be geographically distant.
As a result, these services must be robust and able to handle the
communication that needs to happen across platforms as different as
mainframes and PC’s. In Chapter 8, we will investigate this in our
discussion of Components.

Language Features
Many languages provide “pre-made” constructs (classes) that we can
use in our design phase. Some of these are direct construct of the
language. Others are provided as library routines, separately. Some
of these classes are listed below.

Object-Oriented Analysis and Design 152

X52.9267-001 Not for Commercial Use

String Classes
Some object-oriented languages provide string classes. These classes
allow string manipulation functions including tokenization47, searching,
replacing, etc. Having these utility classes “pre-made” frees us from
having to create these “from scratch”.
Collection (container) Classes
Many languages provide “off-the-shelf” collection classes that we can
use in our design. Collection classes typically manage their own
memory. These collection classes include the following.

Generic Collection Classes
These classes support un-ordered grouping of other objects. The
collection classes (and their objects) allow us to aggregate groups of
objects, not necessarily all from the same class or inheritance
structure. Collection classes such as these typically provide methods
to add to the collection, delete from the collection, provide a current
count, etc. These operations would be part of the interface of the
collection object.

Sets
A set is a specific type of collection where the contents of the class are
ordered. Typically, no duplicates are allowed and in some cases, sets
are implemented such that there can only be one null value.

Lists
List objects hold an ordered collection of objects as well. However, a
list is typically sequentially accessed. This means you can only go
from one object in the list to another, the next in the order. Some
lists also support moving backward, the previous in the order.

Maps
Maps are collection objects which maintain a <key,value> pair in the
object. This means each object in the collection is associated with a
key. This key is used to retrieve the value from the map. No objects
are added to the map without a corresponding key.

Operator overloading
Earlier, we discussed function (method) overloading. Operator
overloading is similar in concept. Think of an operator as a function
with an implicit operand (parameter) and zero or more explicit
operands. Then overloading an operator becomes the same as
overloading a function. We are changing the parameter list. Why

47 A string is tokenized when it is broken up sequentially into tokens (groups of characters), separated by
delimiters.

 153 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

would we overload operators? To more closely adhere with the
semantics of our abstractions. Say we have a class that needs to
support the logical addition and subtraction operations, based on the
real-world objects it represents. We could define operations Add() and
Subtract() in the class to provide this functionality. Our other
alternative, if operator overloading is supported, is to define
overloaded operators that are the functional equivalents to the Add()
and Subtract() functions. Overloading the operators, if available, does
not add new functionality. Instead, it contributes, sometimes greatly,
to the overall clarity and readability of the code.
Parameterized Classes
Depending on the language or environment being used, some of the
collection classes may be implemented as parameterized classes.
Parameterized classes, if supported by a particular programming
language, can be important tools for us as designers. In a
parameterized class, the fundamental types used in implementing the
class are passed in as parameters when creating an instance of the
class. So, if we wanted to create two lists, each of which would hold
completely unrelated objects, we could create one parameterized
class. We would then create instances, each with the appropriate
type.

+attribute1
#attribute2
-attribute3

Stack

Parameter1:long

-attribute1
#attribute2
+attribute3

Stack

Parameter1:int

Fig 6.2 Parameterized class

Sample Project
Let us apply what we’ve learned so far to our example. As we evolve
our design, there are some questions that now need to be answered.
The way we answer these questions will obviously influence our
design. We may also discover that our requirements do not
completely specify certain areas. In this case, we may have to make
some assumptions. Our journey continues below:

Object-Oriented Analysis and Design 154

X52.9267-001 Not for Commercial Use

1. Adding a new student’s information: Where should the method
or methods corresponding to this belong? Are the “student”
classes responsible for this, or is the System class responsible
for this? What does it mean to have the “student” classes
responsible for this activity? That means an object of the correct
type of student would have to be instantiated and initialized
properly. Let us think of semantics also. Is it reasonable to
expect a student object to know how to add itself to the system?
Also, consider the sequence of events. Something (i.e. the All
Students object) would have the instance of the student object
created then the student object would know how to add itself to
the list of other student objects maintained by the system.
Doesn’t seem reasonable. Instead, it appears that the method
to add a new student to the system should have the correct
student object instantiated and initialized (probably via the
correct constructor), and then add the student to the list
managed by the All Students object, all within the System
object. So let’s call the method “AddNewStudent()” and add it
to the All Students class. Let us replace our “SetStudents()”
accessor method with this method.

2. Searching and displaying a student’s information: This is an

operation of the entire list of students, held within the System
object. As a result, this method, which we will call
“SearchStudents()”, will be inside the All Students class also.

3. Deleting a student: As before, this is an operation on the entire

list of students. Let’s call this method “DeleteStudent()” and
include it in the All Students class.

4. Changing/assigning classes and credits to students: Let us

examine what we have to do to change student information. We
have to locate the particular student object by some means then
access the information in that object to change it. As the list is
maintained in the System object the method or methods to
change student information should be there also. Let’s assume
we have one method: ChangeStudentClassesAndCredits(), which
we will add to the All Students class. This method will access
the access methods of the student object to indirectly
manipulate the private data.

5. Changing/assigning a student’s major: This is similar to the

methods we’ve defined immediately prior to this. Using the

 155 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

same logic, let us call this method ChangeStudentMajor() and
add it to the All Students class.

6. Changing/assigning a student’s type: This method will cause a

student’s type to change from Typical to Faculty or Transfer, etc.
This involves creating and deleting objects, i.e. deleting an
existing object and creating a replacement. This should also be
in the All Students class. Let us call this method
ChangeStudentType().

7. Changing/assigning a student’s status, i.e. full-time or part-time

according to the rules above: Same reasoning as above. Let’s
call the method ChangeStudentStatus() and add it to the All
Students class.

8. Producing reports: We need to provide a total of seven (7)

reports. Let’s make each report be generated by a method,
named as follows:
SortedFullTimeStudents()
SortedPartTimeStudents()
NumberofStudentsOfEachType()
SortedNamesAndAddresses()
ReversedNamesAndAddresses()
StudentsMajorsAndCredits()
StudentsCostForTheSemester()

So, let’s list our classes again, including all of our methods:

Class TypicalStudent
Attributes:
Student Name (Object of class Name)
Student Address (Object of class Address)
ID
Majors (Object of class Student Majors)
Subjects (Object of class Student Subjects)
Grade
Discount

Methods: (All public)
GetStudentName()
SetStudentName()
GetStudentAddress()
SetStudentAddress()
GetStudentID()

Object-Oriented Analysis and Design 156

X52.9267-001 Not for Commercial Use

SetStudentID()
GetStudentMajors()
SetStudentMajors()
GetStudentSubjects()
SetStudentSubjects()
GetStudentGrade()
SetStudentGrade()
GetStudentDiscount()
SetStudentDiscount()

Class FacultyStudent
Attributes:
All attributes of TypicalStudent
Subject Taught
Date Employed (Start of employment - used to calculate length of
service)

Methods:
All methods of TypicalStudent
GetSubjectTaught()
SetSubjectTaught()
GetDateEmployed()
SetDateEmployed()

Class TransferStudent
Attributes:
All attributes of TypicalStudent
Home college (Object of class College)

Methods
All methods of TypicalStudent
GetHomeCollege()
SetHomeCollege()

Class HomeCollege
Attributes:
College Name
College Address (Object of class Address)

Method:
GetCollegeName()
SetCollegeName()

Class Name

 157 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Attributes:
First Name
Middle Initial
Last Name

Methods:
GetFirstName()
SetFirstName()
GetMiddleInitial()
SetMiddleInitial()
GetLastName()
SetLastName()

Class Address
Attributes:
Street Address
City
State
Zip

Methods:
GetStreetAddress()
Set StreetAddress()
GetCity()
SetCity()
GetState()
SetState()
GetZip()
SetZip()

Class Subject
Attributes:
Subject Name
Credits

Methods:
GetSubjectName()
SetSubjectName()
GetCredits()
SetCredits()

Class Major
Attributes:
Name_of_Major

Object-Oriented Analysis and Design 158

X52.9267-001 Not for Commercial Use

Methods:
GetMajor()
SetMajor()

Class System
Attributes:
Majors (Object of class All Majors)
Subjects (Object of class All Subjects)
All Students (List of objects representing all types of students)

Methods:
GetMajors()
SetMajors()
GetSubjects()
SetSubjects()
GetStudents()
SortedFullTimeStudents()
SortedPartTimeStudents()
NumberofStudentsOfEachType()
SortedNamesAndAddresses()
ReversedNamesAndAddresses()
StudentsMajorsAndCredits()
StudentsCostForTheSemester()

Class StudentMajors
Attributes:
Majors

Methods:
GetMajors()
SetMajors()

Class StudentSubjects
Attributes:
Subjects

Methods;
GetSubjects()
SetSubjects()

Class AllMajors
Attributes:

 159 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Majors

Methods:
GetMajors()
SetMajors()

Class AllSubjects
Attributes:
Subjects

Methods:
GetSubjects()
SetSubjects()

Class AllStudents
Attributes:
Students

Methods:
AddNewStudent()
SearchStudent()
DeleteStudent()
ChangeStudentClassesAndCredits()
ChangeStudentMajor()
ChangeStudentType()
ChangeStudentStatus()

There are other methods to consider. Let us explicitly discuss the
constructors and destructors for each of our classes.

Constructors
There are three “student-related” classes, Typical Student, Faculty
Student and Transfer Student.

The TypicalStudent class represents all typical students. It is also, by
design, the base class of our student hierarchy. So, our constructor
will have to initialize the attributes of TypicalStudent. How do we
initialize objects of the TypicalStudent class? If an object of this class
represents an individual student then which attributes are “must
haves”? In this context, it would not make sense to have a
TypicalStudent object with no name and address. Neither would it
make sense to have a TypicalStudent object without an ID. However,
we could conceivably have a student object without a list of majors or

Object-Oriented Analysis and Design 160

X52.9267-001 Not for Commercial Use

subjects, a grade or a discount. These could be added later, and in
fact, the ability to modify these is part of the overall requirements.
We can use constructors to assist here. Also, the requirements tell us
we need to provide for changes in type, i.e. changing from
TypicalStudents to Faculty/Transfer and vice versa. We can use a
constructor to assist here as well. We can define a constructor that
will allow us to create an object of TypicalStudent from an object of
Faculty or Transfer. So we could have three constructors, as follows:
TypicalStudent(name, address, ID)
TypicalStudent(FacultyStudent)
TypicalStudent(TransferStudent)

Why are we using constructors to convert between base class and
subclass objects? The decision is based on the need to have an object
that represents each type of student, in keeping with our design thus
far. We could access FacultyStudent and TransferStudent objects from
a reference (or pointer) to a TypicalStudent object, but the underlying
object would not be a TypicalStudent object. This is one case where
we’re not trying to exploit inheritance and polymorphism.

For FacultyStudent and TransferStudent objects, the ideas above hold
also. As such, for each, we would need a constructor that only allows
objects of that class to be created with a name, address and ID. As
well, we will include constructors for FacultyStudent and
TransferStudent that would allow for conversions as well.

We then have the following:
FacultyStudent(name, address, ID)
FacultyStudent(TypicalStudent)
FacultyStudent(TransferStudent)

TransferStudent(name, address, ID)
TransferStudent(FacultyStudent)
TransferStudent(TypicalStudent)

We may also define other constructors as necessary. For example, we
may have a need to define copy constructors, i.e. constructors that
take an object of the same class and make a copy of the attributes. If
we need any of these later on, we’ll add them.

HomeCollege
What should our constructor for the College class be defined as? The
College class has an attribute for name and an attribute for address.
If we decide that an object of the college class should not be created

 161 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

without the name and address of the home college, then we need to
have a constructor that does this. So we would have the following:
Home College(name, address)

We do not have a requirement for conversions or copies, etc. So we’ll
keep this as our only constructor.

Name
For the Name class, we should not have an object created without the
First and Last names. Not all people have a middle initial. So, it
seems we need two constructors, as follows:
Name(first, last)
Name(first, middleinitial, last)

Address
For the Address class we should not have an object created without
the Street, City, State and Zip fields. This obviously is a US-centric
model. In any case, our constructor can ensure this, as follows:
Address(Street, City, State, Zip)

Subject
We should create objects of the Subject class without a Name and
Credits. We’re assuming each subject available has an explicit number
of credits associated, greater than or equal to zero. So, we use our
constructor as follows:
Subject(Name, Credits)

Object-Oriented Analysis and Design 162

X52.9267-001 Not for Commercial Use

Major
We should create objects of the Major class without a name. So, we
use our constructor as follows:
Major(Name_of_Major)

System
The System class is a very critical class in our design. As a result, the
constructor for our system class is important as well. Let’s examine
this constructor. So far, we’ve decided that the system class will
manage the lists of subjects, majors and students. In addition, the
“reporting” functionality will be in the System class. How then, do we
employ a constructor to properly create an object of the system class?
Our constructor needs to properly initialize all of the lists managed by
that System object. The constructor only has to initialize the list to be
empty. What about parameters? There aren’t any that we would
identify at this point. So, it seems we need to implement the following
constructor:
System()

StudentMajors
This class represents the list of majors for a particular student. The
constructor only has to initialize the list to be empty. There are no
parameters. So, we need the following constructor:
StudentMajors()

StudentSubjects
This class represents the list of subjects for a particular student. The
constructor only has to initialize the list to be empty. There are no
parameters. So, we need the following constructor:
StudentSubjects()

AllMajors
This class represents the list of all majors available to any student.
The constructor only has to initialize the list to be empty. There are
no parameters. So, we need the following constructor:
AllMajors()

AllSubjects
This class represents the list of all subjects available to any student.
The constructor only has to initialize the list to be empty. There are
no parameters. So, we need the following constructor:
AllSubjects()

 163 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

AllStudents
This class represents the list of all students. The constructor only has
to initialize the list to be empty. There are no parameters. So, we
need the following constructor:
AllStudents()

Destructors
We need to consider how we will “clean up after ourselves”. What
does this mean? This is more related to implementation. Depending
on our choice of implementation for our lists, i.e. static or dynamic, we
may need to explicitly define methods (i.e. destructors) that deallocate
the memory allocated for each object on our list. Again, this may be
a very good idea for each class that manages a list: System, All
Subjects, All Majors, Student Subjects and Student Majors.

Checkpoint
So, our list of classes, attributes and methods are now:

Class TypicalStudent
Attributes:
Student Name (Object of class Name)
Student Address (Object of class Address)
ID
Majors (Object of class StudentMajors)
Subjects (Object of class StudentSubjects)
Grade
Discount
Methods: (All public)
TypicalStudent(name, address, ID)
TypicalStudent(FacultyStudent)
TypicalStudent(TransferStudent)
GetStudentName()
SetStudentName()
GetStudentAddress()
SetStudentAddress()
GetStudentID()
SetStudentID()
GetStudentMajors()
SetStudentMajors()
GetStudentSubjects()
SetStudentSubjects()
GetStudentGrade()
SetStudentGrade()

Object-Oriented Analysis and Design 164

X52.9267-001 Not for Commercial Use

GetStudentDiscount()
SetStudentDiscount()

Class FacultyStudent
Attributes:
All attributes of TypicalStudent
Subject Taught
Date Employed (Start of employment - used to calculate length of
service)

Methods:
All methods of TypicalStudent
FacultyStudent(name, address, ID)
FacultyStudent(TypicalStudent)
FacultyStudent(TransferStudent)
GetSubjectTaught()
SetSubjectTaught()
GetDateEmployed()
SetDateEmployed()

Class TransferStudent
Attributes:
All attributes of TypicalStudent
Home college (Object of class HomeCollege)

Methods
All methods of TypicalStudent
TransferStudent(name, address, ID)
TransferStudent(FacultyStudent)
TransferStudent(TypicalStudent)
GetHomeCollege()
SetHomeCollege()

Class HomeCollege
Attributes:
College Name
College Address (Object of class Address)

Method:
HomeCollege(name, address)
GetCollegeName()
SetCollegeName()

Class Name

 165 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Attributes:
First Name
Middle Initial
Last Name

Methods:
Name(first, last)
Name(first, middleinitial, last)
GetFirstName()
SetFirstName()
GetMiddleInitial()
SetMiddleInitial()
GetLastName()
SetLastName()

Class Address
Attributes:
Street Address
City
State
Zip

Methods:
Address(Street, City, State, Zip)
GetStreetAddress()
Set StreetAddress()
GetCity()
SetCity()
GetState()
SetState()
GetZip()
SetZip()

Class Subject
Attributes:
Subject Name
Credits
Subject Grade

Methods:
Subject(Name, Credits)
GetSubjectName()
SetSubjectName()
GetCredits()

Object-Oriented Analysis and Design 166

X52.9267-001 Not for Commercial Use

SetCredits()

Class Major
Attributes:
Name_of_Major

Methods:
GetMajor()
SetMajor()

Class System
Attributes:
Majors (Object of class All Majors)
Subjects (Object of class All Subjects)
All Students (List of objects representing all types of students)

Methods:
System()
GetMajors()
SetMajors()
GetSubjects()
SetSubjects()
GetStudents()
SortedFullTimeStudents()
SortedPartTimeStudents()
NumberofStudentsOfEachType()
SortedNamesAndAddresses()
ReversedNamesAndAddresses()
StudentsMajorsAndCredits()
StudentsCostForTheSemester()

Class Student Majors
Attributes:
Majors

Methods:
StudentMajors()
GetMajors()
SetMajors()

Class Student Subjects
Attributes:
Subjects

 167 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Methods:
StudentSubjects()
GetSubjects()
SetSubjects()

Class AllMajors
Attributes:
Majors

Methods:
AllMajors()
GetMajors()
SetMajors()

Class AllSubjects
Attributes:
Subjects

Methods:
AllSubjects()
GetSubjects()
SetSubjects()

Class AllStudents
Attributes:
Students

Methods:
AllStudents()
AddNewStudent()
SearchStudent()
DeleteStudent()
ChangeStudentClassesAndCredits()
ChangeStudentMajor()
ChangeStudentType()
ChangeStudentStatus()

Let’s look at our class diagrams. We will only depict the attributes of
each class, as well as the hierarchical (i.e. inheritance and
composition) relationships between classes.

Object-Oriented Analysis and Design 168

X52.9267-001 Not for Commercial Use

Part A:

+operation1()

-Student_Name
-Student_Address
-ID
-Majors
-Subjects
-Grade
-Discount

TypicalStudent

-Subject
-Employment_Date

FacultyStudent

-Home_College

TransferStudent

-Street_Address
-City
-State
-Zip

Address

-

StudentSubjects

-First_Name
-Middle_Initial
-Last_Name

Name

StudentMajors

Major

Subject

-College_Name
-College_Address

HomeCollege

1

1

1

*

1

1

1
*

1

*

1 1
1

1

Fig 6.1 Student class relationships

Part A depicts the inheritance relationship between the “student”
classes. In addition, we can see the associative relationships. Due to
the inheritance relationship between the sub-classes and base class,
the associative relationships that involve the base class are inherited
by the sub-classes as well. Some of the relationships are 1-1, i.e.
name, address, etc. Others are 1-many, i.e. between the class
managing a list of subjects and individual subjects.

 169 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Part B:

-Majors
-Subjects
-Students

System

AllStudents

FacultyStudent

AllM ajors AllSubjects

TypicalStudent TransferStudent

Subject

M ajor

1

*

1

*

1

*

1

1 1
*

1

*

1

*

1

*

Fig 6.2 System class relationships

Part B depicts the relationships involving the system class. Here also,
we can see the associative relationships. Again, some of the
relationships are 1-1, while others are 1-many.

Persistence and Data Management
So far, we have not spent any time with regard to persistence or data
management. Let’s look at these separately.

We know from the initial requirements that the system is expected to
maintain student data in a relational database. From our analysis, we
understand what student data needs to be maintained. If we take a
linear view of the data, we have the following

For class TypicalStudent:
Student Name (object of class Name)
Student Address (object of class Address)
ID
Majors (object of class Majors - aggregate)
Subjects (object of class Subjects - aggregate)
Overall Grade
Discount

For a FacultyStudent:
All attributes of TypicalStudent
Subjects Taught (object of class Subjects)

Object-Oriented Analysis and Design 170

X52.9267-001 Not for Commercial Use

Date Employed

For TransferStudent:
All attributes of TypicalStudent
Home college (Object of class College)

For HomeCollege:
College Name
College Address (Object of class Address)

For class Name:
First Name
Middle Initial
Last Name

For class Address:
Street Address
City
State
Zip

For class Major:
Name of Major

For class Subject:
Subject Name
Credits
Subject Grade

Given that our available database is relational, we have to map the
data defined in our classes (multi-dimensional) into a 2-dimensional
model. This will give us some insight into the tradeoffs and
compromises we have to make in the real world.

Our unique identifier is the student ID. No two students will have the
same student ID. For simplicity, let’s define the ID as a number,
though it could just as equally have been a character string. We can
then organize the data relevant for a student with the key being the
student ID.

 171 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

A database schema48 may be designed that identifies a table for each
of the abstractions listed above, with a few notable exceptions. Our
list is as follows:

Table TypicalStudent (corresponds to class TypicalStudent):
ID
First Name
Middle Initial
Overall Grade
Discount

Table FacultyStudent(corresponds to class FacultyStudent):
ID
Date employed

Table TransferStudent(corresponds to class TransferStudent):
ID
Home College Name
Home College Street Address
Home College City
Home College State
Home College Zip

Table StudentAddress(corresponds to class Address):
ID
Street Address
City
State
Zip

Table StudentMajor(corresponds to class StudentMajor):
ID
Name of Major

Table StudentSubject(corresponds to class StudentSubject):
ID
Subject Name
Credits
Subject Grade

You’ll notice that we do not have a separate table for Name. We’ve
included the attributes of the Name class in the TypicalStudent table.

48 A database layout.

Object-Oriented Analysis and Design 172

X52.9267-001 Not for Commercial Use

While this does simplify our database schema, it limits association
between name and ID to 1:1. So, students are limited to using one
name only49. If this was deemed insufficient, we could add another
table. In practical terms, this would be unlikely.

We do not have a table for HomeCollege either. How is this possible?
As was done for Name, the data from the HomeCollege class has been
included in the TransferStudent table. The overriding assumption is
that we keep track of the last college the student transferred from
only.

Each of our tables will have primary keys defined. The list of keys is
below:

Table TypicalStudent:
ID

Table FacultyStudent:
ID

Table TransferStudent:
ID

Table StudentAddress:
ID
Street Address

Table StudentMajor:
ID
Name of Major

Table StudentSubject:
ID
Subject Name

Earlier, we defined the student ID as the unique identifier to be used
for students. Since it is unique, it is the only value required as a key
for TypicalStudent, FacultyStudent and TransferStudent. For
StudentAddress, we add the value of the street address to the key.
The assumption here is that a student may have different addresses,
i.e. home, dorm, etc. For StudentMajor, the key includes the ID and
the name of the major. Likewise, for StudentSubject, the key includes

49 It is a good assumption that students would not give multiple aliases at time of registration.

 173 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

the ID and the name of the subject. We use a multi-valued key in
each table where we might have multiple rows existing with the same
ID, as is possible in StudentMajors, StudentSubjects and
StudentAddresses.

TypicalStudent

PK ID

first_Name
middle_Initial
overall_Grade
discount

FacultyStudent

PK,FK1 ID

date_Employed
TranserStudent

PK,FK1 ID

college_Name
college_Street_Address
college_City
college_City
college_State
college_PostCode
college_Country

StudentMajor

PK,FK1 ID
PK name_Of_Major

StudentAddress

PK,FK1 ID
PK street_Address

city
state
post_Code
country

StudentSubject

PK,FK1 ID
PK name_Of_Subject

credits
subject_Grade

Fig 6.3 Entity-Relationship diagram for student data

The diagram above expresses the relationships that exist between
tables.

There are other data values that we need to store in our database. We
need to store the complete lists of classes and majors, in addition to
keeping information to be used in calculating discounts and student
costs. These additional tables are outlined in the diagram below.

Object-Oriented Analysis and Design 174

X52.9267-001 Not for Commercial Use

AllMajors

PK major_ID

name

AllSubjects

PK subject_ID

subject_Name
credits

SubjectCost

unit
cost

StudentDiscount

years
discount

SubjectMajor

PK,FK2 subject_ID
PK,FK1 major_ID

Fig 6.4 Additional entities

Given this schema, how do we implement functionality that we can use
to save to and restore from our relational database? We made some
trade-offs in an attempt to “flatten” the data so it would fit into a
relational model. We now need to build a bridge between our
relational model and our object model. In practical terms, this means
we need to implement methods to transform object-based data into
relational form and vice-versa.

Student-Related Data
If we want to store the state of a student, we need to save the states
of the various objects that are cooperating to give us our overall view
of a student and their related information. This means each class will
have to have methods to save to and restore from our relational
database. Let’s look at this in more detail, reviewing each class’ needs
individually. Our goal is to understand where to implement our
methods. We will call the method to save data Save() and the method
to restore data, Restore()50.

50 See Chapter 2.

 175 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

As complicated as this might sound, in this case it is actually quite
straightforward as we have effectively constructed a 1:1
correspondence between entities and classes51. However, we have to
figure out how to create Name and HomeCollege objects. In addition,
we have to decide what kind of abstraction should represent the
database in our design.

TypicalStudent
Saving Data
This class needs to store data in the TypicalStudent table. There is a
direct correlation between this data and the data in the TypicalStudent
class. However, as we mentioned before, we included information that
we would expect to find in the name and address attributes as well.
So, when we save an object of this class, we are indeed saving the
objects of classes Name, Address, Student Majors, and
StudentSubjects() that are embedded in any object of TypicalStudent,
in addition to saving the other attributes in the TypicalStudent class.
Saving a TypicalStudent object involves obtaining and saving all of the
values from the attributes.

As part of the implementation, we must also determine whether we
are doing an insertion or an update. This means we must be able to
determine if the object being persisted represents a new student or an
existing student. We must devise a mechanism that allows us to do
that. In either case, we must be able to construct the necessary SQL
statements that will allow us to insert or update multiple tables. The
logical view of a student includes the TypicalStudent, StudentAddress,
StudentMajor and StudentSubject tables. We know from the
requirements that the minimum information that we can enter for a
student is their name and address. As a result, the SQL statements to
manipulate the corresponding tables should be included in a
transaction, as we want to ensure successful inserts or updates for all
tables involved.

Restoring Data
How do we create an object of the TypicalStudent class using data
held in our database? We know that the primary key in our
TypicalStudent table is the student ID. So, in order to retrieve an
existing student, we must have the ID. We also mentioned earlier that

51 There are indeed similarities between entities and classes. An entity is itself an abstraction. However,
while classes are abstractions also, they include data and the operations defined on that data and can
harness the power of Encapsulation and the other attributes of object-orientation. Strictly speaking, this, in
addition to the semantics as defined for a class, differentiates tables from classes.

Object-Oriented Analysis and Design 176

X52.9267-001 Not for Commercial Use

we would support searching based on a student’s last name. In this
case, we would also accept a last name, doing whatever we needed to
do to match last name to ID.

Once we have the ID of the student, we need to execute SQL
statements to retrieve data from all student-related tables. The data
we retrieve is a “flat” representation of data that needs to be kept in
multiple objects. Practically speaking, this means we need to be able
to construct Name and Address objects, in addition to StudentMajor
and StudentMajor objects.

FacultyStudent
Saving Data
TypicalStudent is also the superclass in our inheritance hierarchy. We
have the opportunity to leverage this implementation or override it in
the FacultyStudent class. Based on our implementation of Save() in
the superclass, we will need to override this in the FacultyStudent
class as that implementation executes SQL statements which do not
work for the FacultyStudent class. All the steps we did for the
TypicalStudent class are still valid. However, our SQL statements now
have to include the data elements of the FacultyStudent class.

Restoring Data
Unfortunately, we will not be able to reuse the Restore() method of
the superclass, for the same reasons outlined above. We therefore
have to implement Restore() in the FacultyStudent class. The
modification involves obtaining data from the FacultyStudent table, in
addition to the other student-related tables.

TransferStudent
Saving Data
As with the FacultyStudent class, we will have to override the Save()
method. In this case, we need to obtain data from the
TransferStudent table in the database. As a result, we will need
different SQL statements to accomplish this.

Restoring Data
Here also, we will not be able to reuse the Restore() method of the
superclass, for the same reasons outlined above and for the
FacultyStudent class. We therefore have to implement Restore() in
the TransferStudent class.

 177 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

HomeCollege
Saving Data
In our database, the data corresponding to a HomeCollege object is
held inside the TransferStudent table. This data must be obtained by
the Save() method of the TransferStudent class. As a consequence, it
does not need its own Save() method. However, the accessor
functions must be public.

Restoring Data
The HomeCollege class does not need its own Restore() method either.
The logic here is the opposite of the logic for saving data.

Name
Objects of class Name would be not need their own Save() or
Restore() methods, as their data is maintained in our database as part
of the TypicalStudent table.

Address
Objects of class Address would be not need their own Save() or
Restore() methods, as their data is maintained in our database as part
of the TypicalStudent table.

StudentMajors and Major
Saving Data
An object of this class represents all of the majors of an individual
student, zero, one or two (per requirements). An object of
StudentMajors corresponds to the rows in the StudentMajor table for a
given student ID. Since an object of StudentMajors is an aggregate of
objects of class Major, each object of class Major represents one row
returned from the StudentMajor table for a given student ID. SQL
statements would be constructed to insert or update the data in the
StudentMajor table.

Restoring Data
When restoring data from the database, we have to construct an
object of StudentMajors will contain the rows returned from the
StudentMajor table for a given student ID. As above, we will construct
objects of class Major for each row returned from the StudentMajor
table for a given student ID.

StudentSubjects and Subject
Saving Data

Object-Oriented Analysis and Design 178

X52.9267-001 Not for Commercial Use

An object of this class represents all of the subjects being taken by an
individual student, zero, or more (per requirements). An object of
StudentSubjects corresponds to the rows in the StudentSubjects table
for a given student ID. Since an object of StudentSubjects is an
aggregate of objects of class Subject, each object of class Subject
represents one row returned from the StudentSubjects table for a
given student ID. SQL statements would be constructed to insert or
update the data in the StudentSubjects table.

Restoring Data
When restoring data from the database, we have to construct an
object of StudentSubjects will contain the rows returned from the
StudentSubjects table for a given student ID. As above, we will
construct objects of class Subject for each row returned from the
StudentSubjects table for a given student ID. SQL statements have to
be constructed to retrieve data from the StudentSubjects table.

AllMajors
Saving Data
An object of this class represents all of the majors available to
students. An object of StudentMajors corresponds to the rows in the
AllMajors table. Since an object of StudentMajors is also an aggregate
of objects of class Major, each object of class Major represents one
row returned from the AllMajors. SQL statements would be
constructed to insert or update the data in the AllMajors table.

Restoring Data
When restoring data from the database, we have to construct an
object of AllMajors will contain the rows returned from the AllMajors.
As above, we will construct objects of class Major for each row
returned from the AllMajors.

AllSubjects
Saving Data
An object of this class represents all of the majors available to
students. An object of AllSubjects corresponds to the rows in the
AllSubjects table. Since an object of AllSubjects is also an aggregate
of objects of class Subject, each object of class Subject represents one
row returned from the AllSubjects table. SQL statements would be
constructed to insert or update the data in the AllSubjects table.

Restoring Data
When restoring data from the database, we have to construct an
object of AllSubjects will contain the rows returned from the

 179 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

AllSubjects. As above, we will construct objects of class Major for each
row returned from the AllSubjects table.

AllStudents
An object of this class represents all of the students. An object of
AllStudents corresponds to the rows in the TypicalStudents table, with
additional knowledge of whether they are typical, transfer or faculty.
An object of AllStudents is obviously an aggregate of objects of class
TypicalStudent, FacultyStudent or TransferStudent. So, to save data,
we would invoke the Save() method as defined for each object.
Likewise, to restore data, we would invoke the Restore() method as
defined for each object.

System Functionality and Report
Requirements
From the report requirements, we know that there are various
business functions that we must provide. These will be essentially
insertion, deletion, update or query operations. These are outlined
below:

Adding a new student’s information
This entails inserting new student information into the database. This
is an insertion operation. As stated in the requirements, we will not
have to deal with storing incomplete student data. The assumption is
that we will always be entering a complete student record, with the
exception of majors and subjects. We should assume we will have
complete name, address, etc.

Searching and displaying a student’s information
Retrieving a student’s information is based on executing a series of
queries based on the student’s ID (simplest option). However, we
should also support queries by student last name, which may return
multiple records. In any case, we will be executing a series of queries
as we need to create the appropriate objects in our object model from
the data in the database, which does not map exactly. For example,
how will we determine whether a student is typical, faculty or transfer?
We first have to obtain a student ID that is either entered by the user
or derived from the student’s last name. We have to query the
FacultyStudent query with an ID. If there are records with this key,
the ID belongs to a student that is also a member of faculty. If not,
we still have to execute a query to determine if there is a record
corresponding to this ID in the TransferStudent table. Of course, we

Object-Oriented Analysis and Design 180

X52.9267-001 Not for Commercial Use

are assuming that a transfer student can never be a faculty student
and vice-versa. This is implicit in the requirements.

Deleting a student
This function involves deleting all records related to a particular ID
from all tables in the database.

Changing/assigning classes and credits to students
This is effectively an update operation that requires us to update class
and credit data based on an individual ID.

Changing/assigning a student’s major
This is effectively an update operation that requires us to update class
and credit data based on an individual ID.

Changing/assigning a student’s type
This operation is a bit more complicated, as it involves multiple
database operations, depending on the predecessor and successor
types. If a student changes from faculty to typical, that involves a
deletion of data from FacultyStudent. If the direction was reversed,
we would insert into FacultyStudent. Similar operations would occur if
a transfer student became a typical student, say at the beginning of
the following school year. We would have to remove the transfer
college information from TransferStudent. To go from a transfer
student to a faculty student, or vice-versa, we have to do two
operations, a delete from one and an insert into the other. These two
operations need to execute successfully, as the database would be in
an inconsistent state otherwise. These operations would need to be
included in a transaction52.

Changing/assigning a student’s status, i.e. from full-time to part-time
or vice-versa
This is effectively an update operation that requires us to update class
and credit data based on an individual ID.

The same analysis can be done for the reports that the system must
provide. The list of reports is below.

Sorted list of full-time students (all information)
This is implemented as a query that returns all of the students with
more than ten credits

52 A transaction represents a group of operations that execute atomically, i.e. as one. This means if one
operation in the transaction fails, the transaction as a whole, fails.

 181 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Sorted list of part-time students (all information)
This is implemented as a query that returns all of the students with
less than ten credits

Number of students of each type (typical, faculty and transfer)
This is implemented as a series of queries as we have to determine
how many records are in the TypicalStudent table that are not in
either of the other two tables, in addition to determining how many
records are in each of the FacultyStudent and TransferStudent tables.

For each type of student, a sorted list of student names and addresses
This is similar to the solution above, except we need to produce a
sorted list, not a count.

For each type of student, a reversed list of student names and
addresses
As above, but sorted in reverse order.

List of all students, their majors and number of credits
This is similar to the very first report and would be implemented in a
like fashion.

A sorted list of all students based on their cost for the semester
This operation will require a series of queries as well, in order to
calculate the appropriate cost for the semester.

Implementing Data Management Methods
From our discussion earlier, we know we have two choices. One is to
define a class that represents the entire database, with operations
defined that match the business functionality requirements, or to
include similar operations in other classes. How should we create an
abstraction for our data management? Another way of looking at this
is to say, what level of abstraction should we select for our data
management operations? So far, we know we will have Save() and
Restore() methods defined for many classes. In addition, we will have
methods that correspond to the data required for our reports. We also
have classes AllStudents and System.

Creating an abstraction representing the database gives us some
advantages. For example, we can centralize the mechanism to
connect to the database, i.e. supplying the database name, user id,
password, etc. In addition, we could also centralize handling cursors,

Object-Oriented Analysis and Design 182

X52.9267-001 Not for Commercial Use

executing dynamic SQL statements and interacting with stored
procedures. The interface for such a class would reflect this. To avoid
confusion, let’s name this class DBClass53. Since we are working with
one database, there would be one instance of this class in our system.
We will need to define one or more constructors and a destructor for
DBClass.

Now we need to determine which classes need to interact directly with
DBClass. Some object has to create an instance of DBClass. This will
be an object of class System. We also need to interact with the
database to manipulate student data. The logical place to have this
interaction is in class AllStudents, as this represents all of the students
in the system.

Class Details Revisited
In order to get our system to “hang together” correctly, we have to
modify the definitions of constructors and other methods, add new
attributes, etc. Let’s review the list of classes to be modified.

System
The major modification is that we have to add a new attribute: an
instance of DBClass. This will represent the database we will be using
throughout. Based on our simple example, it is logical that we would
attempt to instantiate this attribute during the construction of the
system object itself. In addition to other functionality, the destructor
for System would have to “clean up” the object of class DBClass.

DBClass
This is a new class we “discovered”. Since it represents a database, it
is appropriate for its constructor to take the parameters necessary to
make the connection. Let’s assume we need a database name, user id
and password, all character strings. The constructor is then as
follows:

DBClass(database_name, user_id, password)

We could also define a destructor for DBClass that would terminate the
connection to the database.

In addition to the methods above, we could also define read-only
accessor methods in the class to return the name of the current

53 Creating the new class DBClass is an example of identifying classes by discovery, as mentioned in
Chapter 2.

 183 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

database name and the name of the current user (Get() methods only,
no Set()).

AllStudents
Since this class will be interacting directly with the database, we need
to have a way to refer to the object that represents our current
database. As in everything, we have choices here as well. We could
make an accessor function that returns the database object a public
method of the System class, in which case we need to be able to refer
to the system object in order to use the database. The other choice is
to make a public accessor function as well, but also supply a reference
(or a pointer) to the database object to the object of class AllStudents
for its use. This solution is more elegant, as the only thing we need to
use is the database object, not the entire system object. We should
not need to pass references to the system object around. In order to
implement our choice, the constructor of AllStudents() would need to
be modified to accept the reference to the database object. In
addition, we would need to add an attribute in AllStudents to store
that reference. The other methods currently defined in AllStudents
remain the same.

AllStudents is a class that is an aggregate of TypicalStudent,
TransferStudent and FacultyStudent objects. We will add methods
GetFirst() and GetNext(), Count(), Append() and Delete() to the
interface of all aggregate classes. This will make the interaction with
them easier. GetFirst() and GetNext() would allow callers to navigate
through the object that are in the aggregate. This facilitates any
browsing of the objects in the class. Count() would return the number
of objects currently in the aggregate. Append() would add objects to
the collection (aggregate) and Delete() would remove objects from the
collection.

Address
As with AllStudents, we will add GetFirst() and GetNext(),Count(),
Append() and Delete() methods. This is because a student could
have more than one address.

Student Majors
As with AllStudents, we will add GetFirst() and GetNext(),Count(),
Append() and Delete() methods.

Student Subjects

Object-Oriented Analysis and Design 184

X52.9267-001 Not for Commercial Use

As with AllStudents, we will add GetFirst() and GetNext(),Count(),
Append() and Delete() methods.

All Majors
As with AllStudents, we will add GetFirst() and GetNext(),Count(),
Append() and Delete() methods.

All Subjects
As with AllStudents, we will add GetFirst() and GetNext(),Count(),
Append() and Delete() methods.

Our updated class models are below.

+System()
+GetMajors()
+SetMajors()
+GetSubjects()
+SetSubjects()
+GetStudents()
+SetStudents()
+GetSortedFullTimeStudents()
+GetNumberOfStudentsOfEachType()
+GetSortedNamesAndAddresses()
+GetReversedNamesAndAddresses()
+GetStudentsMajorsAndCredits()
+GetStudentsCostForSemester()
+GetCurrentDB() : DBClass

-majors : AllMajors
-subjects : AllSubjects
-students : AllStudents
-current_Database : DBClass

System

+AllStudents()
+GetFirst() : TypicalStudent
+GetNext() : TypicalStudent
+Count() : Long
+SearchStudents() : TypicalStudent
+DeleteStudent()
+ChangeStudentClassesAndCredits()
+ChangeStudentMajor()
+ChangeStudentType()
+ChangeStudentStatus()

-number_Of_Students : long

AllStudents

+FacultyStudent()
+FacultyStudent()
+FacultyStudent()
+GetSubjectTaught() : Subject
+SetSubjectTaught()
+GetDateEmployed() : Date
+SetDateEmployed()

-subject_Taught : Subject
-department : String
-date_Employed : Date

FacultyStudent

+TypicalStudent()
+TypicalStudent()
+TypicalStudent()
+GetStudentName() : String
+SetStudentName()
+GetStudentAddress() : String
+SetStudentAddress()
+GetStudentID() : long
+SetStudentID()
+GetStudentMajors() : StudentMajors
+SetStudentMajors()
+GetStudentSubjects()
+SetStudentSubjects()
+GetStudentGrade()
+SetStudentGrade()
+GetStudentDiscount()

-ID : long
-student_Name : Name
-student_Address : Address
-student_Majors : StudentMajors
-student_Subjects : StudentSubjects
-student_Grade : char
-student_Discount : float

TypicalStudent

+TransferStudent()
+TransferStudent()
+TransferStudent()
+GetHomeCollege() : HomeCollege
+SetHomeCollege()

-home_College : HomeCollege

TransferStudent

+Subject()
+GetSubjectName() : String
+SetSubjectName()
+GetCredits() : int
+SetCredits()

-subject_ID : long
-subject_Name : String
-credits : int

Subject

+GetMajor() : String
+SetMajor()

-name : String
-major_ID : long

Major

1

*
1

1

1

*

1
*

1

*

1

*

+DBClass()
+GetDBName() : String
+GetUserID()

-DBName : String
-UserID : String

DBClass

1

*

+HomeCollege()
+GetCollegeName() : String
+SetCollegeName()
+GetCollegeAddress() : String
+SetCollegeAddress()

-college_Name : String
-college_Address : Address

HomeCollege

+Name()
+Name()
+GetFirstName() : String
+SetFirstName()
+GetMiddleInitial() : String
+SetMiddleInitial()
+GetLastName() : String
+SetLastName()
+GetTitle() : String
+SetTitle()

-first_Name : String
-middle_Initial : char
-last_Name : String
-title : String

Name +Address()
+GetStreet() : String
+SetStreet()
+GetCity() : String
+SetCity()
+GetState() : String
+SetState()
+GetPostalCode() : String
+SetPostalCode()

-street_Address : String
-city : String
-state : String
-postal_code : String

Address

+StudentMajors()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-majors
-count : int

StudentMajors

+StudentSubjects()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-subjects
-count : int

StudentSubjects

+StudentMajors()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-majors
-count : int

AllMajors

+StudentSubjects()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-subjects
-count : int

AllSubjects

Fig 6.5 Student-related focus

In this diagram, we are focusing on the “student” classes, highlighting
the relationships therein.

 185 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

+System()
+GetMajors()
+SetMajors()
+GetSubjects()
+SetSubjects()
+GetStudents()
+SetStudents()
+GetSortedFullTimeStudents()
+GetNumberOfStudentsOfEachType()
+GetSortedNamesAndAddresses()
+GetReversedNamesAndAddresses()
+GetStudentsMajorsAndCredits()
+GetStudentsCostForSemester()
+GetCurrentDB() : DBClass

-majors : AllMajors
-subjects : AllSubjects
-students : AllStudents
-current_Database : DBClass

System

+Subject()
+GetSubjectName() : String
+SetSubjectName()
+GetCredits() : int
+SetCredits()

-subject_ID : long
-subject_Name : String
-credits : int

Subject

+GetMajor() : String
+SetMajor()

-name : String
-major_ID : long

Major

+DBClass()
+GetDBName() : String
+GetUserID()

-DBName : String
-UserID : String

DBClass

+StudentMajors()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-majors
-count : int

AllMajors

+StudentSubjects()
+GetFirst() : Major
+GetNext() : Major
+GetCount() : int
+Append()
+Delete()

-subjects
-count : int

AllSubjects

FacultyStudent

TypicalStudent

TransferStudent

HomeCollege

Name

Address

StudentMajors

StudentSubjects

+AllStudents()
+GetFirst() : TypicalStudent
+GetNext() : TypicalStudent
+Count() : Long
+SearchStudents() : TypicalStudent
+DeleteStudent()
+ChangeStudentClassesAndCredits()
+ChangeStudentMajor()
+ChangeStudentType()
+ChangeStudentStatus()

-number_Of_Students : long

AllStudents

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
*

1

*

1

*

1

1

1

*

1

*

Fig 6.6 System-related focus

Object-Oriented Analysis and Design 186

X52.9267-001 Not for Commercial Use

User Interface
Creating usable human-computer interfaces is a topic that could fill a
volume by itself. That is not our intent here. As such, we will not
attempt to review all the elements of a “good” user interface. Instead,
we will discuss how we design the presentation, given the
requirements. In our example, it is obvious that we will have to
provide a user interface. It is just as obvious that

In order to accomplish this, we must quickly review the form of the
various data elements we have to work with. For example, we need to
present a student’s ID, name, grade, discount, etc. These are single
values, meaning there is only one for each student. Some of the data
we have may multiple values per student. For instance, a student may
have multiple majors, subjects and addresses. In addition, we also
keep track of all available majors and subjects. We will use a different
metaphor to present this data.

The objective of a user interface is to provide a usable interface for an
application. Consequently, a user interface should be designed from
the perspective of the user and to benefit the user, while factoring in
technical constraints that exist and which will be accommodated in the
design. A user-interface should not reflect the underlying data or
object-structure, unless indeed that is easiest for the users to use.
The key word in “user interface” is “user”.

Each user interface screen is comprised of various GUI elements54.
The choice of elements, layout, usage, usability, “look and feel” are
what separates good user interface designs from great user interface
designs. How do we know when we have a good design? That is not
an easy question, as it is somewhat subjective. However, we do have
tools at our disposal to help make sure our user interface satisfies all
requirements55. One of those tools is Prototyping.

Prototyping
A picture is worth a thousand words. A direct effect of this is the
importance of Prototyping. Prototyping is very useful for presenting
enough details of a system to increase understanding and generate
feedback. Prototyping is an activity that starts in the Analysis phase,
once there is some understanding of the requirements.

54 Graphical User Interface. See Appendix 3 for a discussion.
55 There may be additional requirements that are supplied that govern the user interface. These would be
categorized as non-functional requirements also.

 187 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

At the simplest, a prototype may consist of paper-based designs. A
simple prototype could be created using simple shapes (rectangles,
squares, etc.) to represent GUI elements such as windows, menus and
buttons. This serves to give the user a “feel” of the application’s
interface. In other cases, more complicated prototypes may be
developed. Obviously, the purpose of the prototype is to facilitate the
understanding of the requirements and to set expectations.

As in other aspects of object-oriented development, Prototyping is
iterative also. It may take several iterations before the developers,
analysts and users are in agreement. While this may seem tedious,
this actually underscores the importance of prototyping, as potentially
troublesome issues can be addressed easily (and cheaply) in the
prototype. Some of these problems could become major issues if they
had to be rectified later in the system development cycle. In general,
the earlier problems are identified and solved, the better of everyone
is.

System Prototype
For our example, we will review a very basic prototype of the system.
The prototype covers some areas of the system. It is not complete.
It represents what would be the beginning of our iterative process.
We would expect the prototype to be modified, possibly significantly,
before it was considered ready and approved.

This figure outlines a proposed menu structure and the main screen of
the application. The menu choices represent activities culled from the
requirements. Let us review the menu options.

Object-Oriented Analysis and Design 188

X52.9267-001 Not for Commercial Use

Fig 6.7 Main menu

 189 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Our main menu items would also have sub-menus. Under the File
menu, we could have menu options to add and delete students and
exit the system.

Fig 6.8 File sub-menu

These may not be the only options that we include under the File
menu. As we develop the prototype, we may find that it is appropriate
to add more options to this menu.
Adding a Student
If we select “Add Student” from the File menu, a window is launched
that displays the form to be used to enter student information. In our
prototype, this is the only screen used to capture student information.
As such, it has all the fields needed for each type of student, all in one
place.

Object-Oriented Analysis and Design 190

X52.9267-001 Not for Commercial Use

Fig 6.9 Adding a new student

 191 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

When we add a student, we need to know what type of student we are
adding. We use a combo box to allow the users to select the type.
The user would select the type corresponding to the type of the
student that is being added. This would cause certain fields to be
available and others to be unavailable, as warranted by the type of
student. Examples follow.

Fig 6.10 Adding a Typical student

Object-Oriented Analysis and Design 192

X52.9267-001 Not for Commercial Use

Fig 6.11 Adding a Faculty student

 193 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Fig 6.10 Adding a Transfer student

Object-Oriented Analysis and Design 194

X52.9267-001 Not for Commercial Use

Searching for Students
Our requirements dictate that the system must allow searches of
students. The user interface for searching is described below. It has
multiple steps, broken down into obtaining search criteria, presenting
search results and displaying the detail for the selected student. If the
search criteria is a student’s last name, we may have multiple results
as there may be many students with the same last name. Thus, we
need to display multiple rows of information in our search results and
allow the user to select the appropriate one.

To allow us to search, we have a menu option, “Find Student” that is a
sub-menu option of the “Search” menu.

Fig 6.11 Find Student menu item

 195 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Fig 6.12 Search criteria

On this form, we see the two search options that we incorporated
earlier. We are able to select whether we want to search by a
student’s last name or by their ID by selecting the appropriate radio
button.

Once we click on the “Search” button, we would execute the search
based on the criteria and launch another window (“Search Results”) to
display the search results.

Object-Oriented Analysis and Design 196

X52.9267-001 Not for Commercial Use

Fig 6.13 Search Results

As we said, we may obtain multiple results from the executing our
search. We will use a tabular grid, to display one or more rows with
multiple columns.

The user would select the correct student from the display. Once that
selection was made, the third form in the sequence would be
displayed. This is the same form as was used for adding a new
student, with some contextual changes. For example, we no longer
need a combo box for the student type. The combo box will be
replaced with a text box, as this form is now being used to display
existing data, not create new data. Indeed, we will have to make the
text box un-editable.

 197 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Fig 6.14 View student details

This example shows how the screen would look if we retrieved
information for a typical student.

From before, we know a student might have multiple addresses,
majors and subjects. Each of these corresponds to an object that is an
aggregate. The methods GetFirst(), GetNext() and Count(), as defined
on each of the “aggregation” objects, will be very useful in populating
these tabular grids. As before, each column in the grid would
correspond to an attribute from the object.

We also have to give the users the ability to modify a student’s data.
In order to accomplish this, there is an “Edit” button on the screen.
The idea is that the users would click on this button to modify data.
This would allow the elements on the screen to be editable, not “read-
only” as in “view” mode.

Object-Oriented Analysis and Design 198

X52.9267-001 Not for Commercial Use

Once we return to “edit” mode, the screen elements would revert to
those apparent when we chose “Add Student” from the “File” menu,
i.e. the combo box would return, etc.
Reports
All of the reporting options of the system could be grouped under the
“Reports” option on the main menu. We could place all report options
on a single separate form as follows.

Fig 6.15 Report options
Maintaining System Data
As we saw with our data model, there are other data elements that we
need to allow our users to maintain. They need to maintain subject
and major data. We’ve grouped these elements under the Tools
menu, as you can see from the picture below.

Each of these options would probably need to have its own form which
would give the users the ability to add new majors, delete majors, add
new subjects and delete subjects.

 199 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

As we go along, we may also discover additional tools and utilities that
need to be included. For example, maintaining the discount rate that
is offered by the institution, for which we do not yet have an interface.

Fig 6.16 Tools menu

Object-Oriented Analysis and Design 200

X52.9267-001 Not for Commercial Use

System Help
As a matter of course applications should provide help for users.
Typically, there is a main menu item called “Help”. Among the items
in the “Help” menu, we may also find the “About” item which gives
information about the system such as version, serial number,
operating system information, etc.

Fig 6.16 Help menu

 201 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Summary
We’ve taken an object-oriented approach to designing this system.
This is definitely not the only possible design we could have
discovered. However, it is important, whatever the design ultimately
is, that you are able to justify the decisions and tradeoffs that you
make. Each decision will have ramifications, some minor, some major.

While we have gone through a few iterations, we are not finished.
This is a design in the “middle” stages and we definitely have more to
do. For example, we need to do more work with our methods. We are
assuming the methods are public and the attributes are private or
protected. However, this is not necessarily true. Also, we have
objects that do list management. However, because these objects are
manipulated from “within” another object, i.e. are part of a
composition relationship, we may decide that we need accessor
methods in the “outer” objects that call methods of the “inner” object.
Why? If we declare the “inner” object, i.e. AllStudents,
StudentSubjects, etc., as private in the “outer” class, then this object
would not be accessible from the outside of the “outer” object. This
means if AllStudents is a private member of System, then no object
outside of System could cause a student to be added. This may or
may not be okay, depending on the language to be used for
implementation. So, we may need to create or utilize an accessor
function to allow objects from the “outside” of this class to invoke
methods which in turn invoke methods of the “inner” class. Of course,
the methods of the “inner” class would have to be public, or none of
this works!

We took a first try at a user interface. However, there are many other
details to work out. Firstly, our prototype is incomplete. We only
prototyped adding and viewing student data. We still need to
prototype editing data, maintaining system data, deleting students,
reports, etc. If we look further, there are some details of our
abstractions that have yet to be finalized. As part of the iterative
nature of object-oriented development, we would expect to review our
classes, their attributes and operations until we were comfortable with
the outcome.

In addition, we would most likely look to implement our aggregate
classes, i.e. AllStudents, StudentMajors, etc. with pre-defined
collection classes or creating instances of parameterized classes. This
is because, though the classes may hold different objects, their

Object-Oriented Analysis and Design 202

X52.9267-001 Not for Commercial Use

behavior is the same. We would have to ensure that such classes
provided the necessary methods such as GetFirst(), Count(), etc.

Evaluation
Let us evaluate our design using the metrics we discussed earlier in
the chapter. These metrics allow us to test the quality of the classes
we’ve chosen, the overall semantics, operations, etc.

Coupling
Coupling is the measure of the strength of association established by a
connection from one class or object to another. Strong coupling
complicates a system, since a module will be harder to understand or
modify by itself, thus adding to the overall complexity of the system.

Our design has some elements that are tightly coupled and some
which are loosely coupled. The inheritance relationship represents
relatively tight coupling in terms of any significant changes to the base
class structure. We benefit from this tight coupling, as we can
leverage attributes and methods of the base class in the subclasses.
Here is an example of a trade-off, stemming from one of our decisions.
In fact, this appears to be the tightest coupling in our design.

We also have elements that are loosely coupled. The associative
relationships involving the TypicalStudent and System classes, and
those involving the “list management” classes are more loosely
coupled. We can make changes to the classes on either side of the
association, and not have any (or minimal) effect on other classes.

Cohesion
Cohesion is the measure of the degree of connectivity among the
elements of a single class or object. Entirely unrelated abstractions
should not be placed together in one class. Unrelated behaviours
should not be captured in the same class.

In our design, we’ve separated our abstractions greatly, creating new
abstractions for functions such as managing lists, etc. In reviewing
our classes’ responsibilities, we have limited our attributes and
methods to only those that are applicable to a particular abstraction.
The greater the extent to which this is done, the more abstractions,
i.e. classes, your system will have. This is another explicit decision to
be made, which yields a trade-off.

 203 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Sufficiency
Sufficiency is the measure of whether or not a class or module
captures enough of the characteristics of the abstraction to allow
meaningful and efficient interactions.

We have to look at sufficiency in the context of the requirements.
We’ve had to supply information where it was lacking in the
requirements (in practice, when this occurs, we would have consulted
the business experts). In this context, how do our classes measure
up? We are somewhat sufficient thus far, but as we mentioned earlier,
we are not finished, i.e. we need to review methods, etc. So we would
potentially expect an incrementally greater degree of sufficiency at the
true end of the exercise.

Completeness
Completeness is the measure of whether or not the interface of a class
captures all of the meaningful characteristics of the abstraction.

Completeness and Sufficiency would seem to be at odds. However, we
have to find a balance. In the context of the requirements, we seem
to be quite complete. However, as we refine further, we would expect
an incrementally greater degree of completeness as well.

Primitiveness
Primitiveness is the measure of the ability of operations to be
efficiently implemented, only if given access to the underlying
representation of the abstraction.

Based on the methods defined thus far, we may infer that they are
somewhat primitive. However, we have not defined how our methods
are implemented, i.e. what their steps will be. We need to examine
our methods for redundancy, within each class. This would be a by-
product of the refinement we have alluded to earlier.

This exercise has demonstrated the incremental and iterative nature of
creating an object-oriented design. As we refine our design, we may
yet discover that we have to change our design to refine behaviours,
and to be better aligned with the spirit of the metrics that we use to
evaluate our abstractions.

We have only depicted class relationships. One aspect of our design is
how we expect objects of our classes to interact at run-time. We need
to consider this as the functionality of our system is based on the
collaboration and interactions between the objects of the classes in our

Object-Oriented Analysis and Design 204

X52.9267-001 Not for Commercial Use

design. We can depict these collaborations and interactions between
objects by means of diagrams such as object diagrams, interaction
diagrams, sequence diagrams, state diagrams, etc. We will explain all
of these and their relationship to the overall design and performance
of systems later on.

 205 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary
• Design is primarily a refinement of the analysis model.

• Reusability, reliability and extensibility are among the object-

oriented design goals.

• Refine class selections by examining coupling, cohesion,
sufficiency, completeness, quality of interface and primitiveness.

• Design Patterns are generalized steps used to solve commonly

occurring problems.

• There are various language features that may be available for
use such as paramterized classes, string classes and collections.

Object-Oriented Analysis and Design 206

X52.9267-001 Not for Commercial Use

Exercises

1. Describe how you would implement a method Count() that
returns the number of students in the system.

 207 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 7

System Development Processes
How do we formalize the activities depicted in Chapter 6 into a
process?

What we want, indeed need to do, is to create a process for solving
problems. This process needs to be well defined, repeatable, well
defined and well managed and well optimized. It is very important
that we distill how we develop object-oriented software into a process
that we can reuse repeatedly. A repeatable process thus becomes a
“pattern” for us to apply when faced with solving new problems. As
we’ve seen with design patterns in Chapter 6, this does not mean we
can’t modify the process to fit our problem. As we’ve seen, these
items are in the context of an iterative and incremental life cycle. We
need to take everything we’ve learned about how we go about
developing object-oriented software and “package” it into a Software
Development Process.

What is a Software Development
Process?
A software development process describes a series of activities, their
pre-requisites and their resulting artifacts (products) that describe how
to develop (hopefully) quality software. An overall process with these
attributes is composed of multiple levels of detail.

The Software Development Process
Object-oriented design should be viewed as is an inherently interactive
and incremental process. It is iterative in the sense that it involves
the successive refinement of an object-oriented architecture. It is
incremental in the sense that each pass through the analysis and

Object-Oriented Analysis and Design 208

X52.9267-001 Not for Commercial Use

design steps leads us to gradually refine our strategic and tactical
decisions, which ultimately yields an appropriate solution, based on
the requirements.

In order to describe our process, let us examine the activities that we
have done so far, using the example as our guide. We’ve gone
through a number of steps so far. We were given requirements. That
implies that at some point, the requirements for our example system
were collected. At this point, we are not done. We haven’t finalized
our design and we have not had any discussions about what comes
after. Here are the steps that have occurred so far.

• Conceptualization and requirements gathering
• Analysis
• Design

Let’s examine each of these, in an attempt to formalize the activities
corresponding to each.

Conceptualization and Requirements
Gathering
While requirements are the cornerstone of our development efforts,
the first step in our process is to get the concept of the system. This
is effectively brainstorming about what the system should do, i.e. what
functionality it should provide, etc. In many cases, this includes
“selling” the idea to management, etc. to get funding to continue. The
concept must be deemed “sound” before anything else is done. Thus,
the notion of conceptualization includes having the idea for the system
and doing those activities that will prove the concept sound, such as
providing sufficient “expected” detail to do a cost-benefit analysis, for
example.

Once we have passed the concept stage, we must gather details about
the expected functionality of the system. These are the requirements.
As stated before, good requirements are critical, as they provide the
boundaries and the guidelines within which our software solutions
must operate. This is true for both functional and non-functional
requirements. From Chapter 2, we know that there are various types
of requirements. This does not tell us how to actually go about
capturing the requirements. A full discussion of how we gather
requirements is out of the scope of this book. However, we need to
account for this step as part of our overall process.

 209 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Analysis
Let’s review what we did during our Analysis step. We reviewed our
system requirements. We applied various techniques (nouns and
verbs, behavior analysis, etc.) to select various candidate abstractions
and applied our evaluation criteria to determine which abstractions
would be our key abstractions. We refined these abstractions as
necessary, factoring and re-factoring. We identified any relationships
between abstractions, seeking to leverage inheritance, aggregation
and association. Let’s look at these steps in more detail.

Fundamentally, we are interested in the activities of choosing quality
abstractions, etc. In practical terms, these would be activities
performed by developers and/or analysts, either individually or in
teams. These activities include the following:

1. Identify classes and objects at a given level of abstraction.
2. Identify semantics of these classes and objects.
3. Identify the relationships between classes and objects

Let us examine each of these activities.

Identify Classes and Objects at a Given Level of
Abstraction

Purpose
As we’ve seen, we use this to establish the boundaries of the problem.
This is the first step in devising an object-oriented decomposition of
the system. In this step, we identify which real-world objects we will
model in our system. Via abstraction, we represent these objects and
we can focus only on the characteristics of the real-world object that
ate relevant to the system. These abstractions will probably be named
for the objects they represent, thus utilizing names and nomenclature
from the problem domain. As a result of doing this, we are deciding
what is and isn’t of interest to our system, giving us, in effect, a
boundary. We may not know all of our abstractions at the end of
Analysis. In fact, as part of design, we may discover new abstractions
.
It is also important to make sure that our classes are at the same level
of abstraction. This means, it is important to be consistent across
classes when deciding which details (of the real-world objects being
modeled) are relevant to the system and which are not. Without this
consistency, we may be unable to leverage class relationships. If we
have abstractions at different levels of detail, we will have a difficult
time understanding the class and ultimately object interactions.

Object-Oriented Analysis and Design 210

X52.9267-001 Not for Commercial Use

Products
How do we track and store the abstractions and details as we go
along? As you’ve seen, it gets unwieldy very quickly. Indeed, as
problems go, our example was a relatively simple problem to solve.
Ideally, we need some way of managing these abstractions that would
make it easier to deal with them. As you may imagine, the need for
something like this increases exponentially as the number of team
members, i.e. individual developers and analysts increases. A central
repository, i.e. a data dictionary consisting of all classes and objects
using meaningful names is necessary for large-scale efforts. This
repository would need to be continuously updated as development
proceeds and would form part of the project’s overall documentation.

This step is complete when we have a reasonable set of candidate
abstractions. If the set is large, it may be appropriate to employ a
repository even at this stage, i.e. a data dictionary.

Activities
The activities at this stage of development include discovery of
abstractions, either from the requirements directly or not.

Identify Semantics of These Classes and
Objects

Purpose
In this step, we establish the behavior, attributes and rules of each
abstraction identified in the previous phase. We need to refine our
candidate abstractions. At this point, we have candidate classes,
many of which will not ultimately be included in our system. The
process of establishing the semantics of each of our candidate classes
will help us weed out those classes that have no place in our model.
This means we have to keep looking at what the responsibilities of
each class are. We have to intelligently distribute the responsibilities,
based on what each class’ semantics are.

These responsibilities will directly translate into the operations that we
define for each class. We need to specify concrete operations (i.e.
protocols) for each abstraction. The result is a precise signature for
each operation. The signature of a method is the combination of the
name of the method and its parameters. We also need to define the
set of attributes to complement our methods, for each abstraction.

 211 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

It is worth noting that our methods may or may not change as we
continue to refine our abstractions (part of our incremental, iterative
process). The effective distribution of responsibilities is based on
repeatedly evaluating our abstraction using the metrics.

Products
• Develop each abstraction’s protocol:

o Create specifications for each abstraction
o Write the interface for each class

Activities
Some of the main activities are below.
Scenario Walk-Through
The idea of storyboarding is to do a walk-through of scenarios
involving the abstraction(s), like they do when developing television
shows and movies.

We may summarize the ideas as follows:

• Select one or a set of scenarios related to an area of
functionality

• Walk through the activity of the scenario assigning reponsibilities
to each abstraction that is participating. Assign responsibilities
that are enough to accomplish the desired behavior, based on
the semantics of the class.

• As the storyboard continues, reassign responsibilities as
required, so that there is a reasonably balanced distribution of
behavior (as mentioned above).

Focus on one class at a time
Sometimes, focusing on one abstraction at a time can give us great
insight into our overall model. Here is a summary of how we proceed:

• Select an abstraction
• Identify and list its roles and responsibilities
• Devise a sufficient set of operations that satisfy these

responsibilities
• Review each operation individually. Ensure it is a primitive

operation. If not, try to expose its more primitive operations
and redefine into more than one operation.

• Consider specific scenarios for construction (constructor),
copying (copy constructor) and destruction (destructor) (later in
cycle)

Object-Oriented Analysis and Design 212

X52.9267-001 Not for Commercial Use

• Review operations and add any other primitive operations as
required.

Pattern Scavenging
The notion of pattern scavenging is akin to our earlier discussion of the
importance of design patterns. Here is how we could apply this
technique

• Recognizes patterns of behavior, which represent opportunities
for reuse.

• Given the complete set of scenarios at this level of abstraction,
look for patterns of interaction among abstractions. This might
point to similarities that may be exploited in the form of
inheritance or aggregation, etc.

• Given a set of responsibilities also at this level of abstraction,
look for patterns of behavior. Common roles and responsibilities
should be unified in the form of common base, abstract classes,
etc.

• Look for patterns within operation signatures. Identifying
operations in different classes with the same functionality may
give opportunities for leveraging similarities between the classes.

At the end of this activity, we should have a reasonably complete,
sufficient, primitive set of responsibilities (methods) for each
abstraction.

Identify the Relationships Among the Classes
and Objects

Purpose
In order to identify the relationships between classes and objects, we
need to do the following:

• Review and strengthen the boundaries of each abstraction
(based on semantics).

• Identify the collaborators with each abstraction (class) identified
earlier in the detailed process.

• Formalize the physical and conceptual separations of concern
among abstractions begun in previous step.

• Identify important inheritance/aggregation relationships and
associations between classes.

This activity will refine the semantics and relationships of the
abstractions and will serve as a blueprint for implementation.

Products

 213 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

• Class diagrams
• Object diagrams
• Module diagrams
• Refinement of data dictionary

Activities
Identification and Specification of Hierarchical Relationships

• For a given set of classes, at the same level of abstraction,
populate a class diagram with each abstraction's important
operations and attributes

• Try to identify semantic dependencies between any two classes,
i.e. if for class A to behave correctly, it must be associated with
class B. If this semantic dependency exists, establish an
association relationship. Establish cardinality and attributes (i.e.
mandatory, optional) of the associative relationship. For each
association, specify role of each participant.

• Validate decisions by walking through scenarios
Identification of Collaborations

• Identify the classes that have objects that will collaborate.
• Produce object diagrams to model these mechanisms and

interactions.
• If common (i.e. similar) classes are found, leverage this

similarity by implementing inheritance hierarchies.
• On a larger scale, group and organize classes into modules and

subsystems
Identify Patterns that may Exist Among Classes and Objects

• Look for opportunities of inheritance relationships
• If there are patterns of structure, consider creating new classes

that capture this, or refining existing abstractions. Consider
classes of similar behavior as candidates for parameterized
classes

Object-Oriented Analysis and Design 214

X52.9267-001 Not for Commercial Use

Identify
classes and objects

Identify semantics of
these classes and

objects

Identify the
relationships between

classes and objects

Iterate

Fig 7.1 Analysis

 215 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Design

It is in the Design phase that we take the models from the Analysis
phase, (i.e. class diagrams, etc.) and take them one step close to
implementation. We have to factor in environment, constraints, non-
functional requirements, cost, time-to-market, etc. We will produce a
set of Design models that will be the basis for implementing the
system.

Design is the next step in our journey toward implementation. As
mentioned in Chapter 2, in the Design phase, we are specifying how
the elements of the system that provide the functionality and satisfy
constraints (non-functional requirements) will be implemented. In
Design, we are creating the overall architecture of our application.

In order to accomplish these goals, we will need to refine and add
more detail to our analysis models. This will entail repeating some of
the activities that were performed in the earlier phase, but with a
different focus.

Mechanisms represent patterns of behavior, i.e. interactions between
collections of objects. These are typically design decisions.

During design, a developer must determine how instances of classes
work together. Remember, an OO system is a collection or
cooperating objects.

A Framework is a collection of classes that provides a set of services
for a particular domain. A framework exports a number of individual
classes and mechanisms that clients can use or adapt (e.g. Microsoft
Foundation Classes (MFC)).

Our design process will include the following steps:

1. Refine classes and relationships
2. Identify environmental opportunities and constraints
3. Identify maximal levels for software engineering goals
4. Identify and employ useful patterns
5. Finalize the interface and implementation of the classes and

objects

Object-Oriented Analysis and Design 216

X52.9267-001 Not for Commercial Use

Refine Classes and Relationships
In Design, we start with the high-level models produced in the
Analysis phase. As we attempt to create the application’s architecture,
we may find that there are some abstractions that need to be modified
to properly fit the architecture56. The abstractions developed in the
Analysis phase may need to have operations added, possibly to
interact with the operational environment, etc. In some cases, as we
attempt to organize our classes into modules, etc., we may notice
weaknesses in the abstractions that need to be fixed before going
further. These are but two of the possible scenarios that may lead to
changing abstractions. It should be noted that the need to refine our
abstractions is oftentimes closely related with the other activities listed
below. It should not be viewed as having a single occurrence. As with
everything else, it too is iterative in nature.

We need to finalize the interface and implementation of the classes
and objects. This will require us to perform analysis to refine of
existing abstractions sufficient to unveil new classes and objects at the
next level of abstraction. Our design is a tangible representation of
our abstractions, with all of the detail from our efforts to refine. We
will make decisions about representation of each abstraction and the
mapping of these to the physical model.

Identify Environmental Opportunities,
Dependencies and Constraints
As mentioned earlier, every system has non-functional requirements
that must be taken into consideration at the time of design. These
non-functional requirements may represent a very diverse set. For
example, some requirements force integration of many legacy
databases and systems, making for a heterogeneous environment.
These need to be incorporated into new development efforts. The
method of interoperability selected may have an impact on the
definition of our abstractions. Other requirements may dictate user-
interface requirements. When confronted with this in our example,
some abstractions were modified to add operations that better support
the user-interface activites (GetFirst(), etc.). Yet other
requirements may constrain our system in some way, or introduce
dependencies. These must be examined for their impact on the overall
design.

56 The architecture of a system is a representation of its components their relationships, in addition to
tactical considerations. See Chapter 9 for a detailed discussion of architecture.

 217 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Some environments provide opportunities for incorporating and
leveraging existing classes and objects. Some of these may substitute
classes already in the model. Some of these may change the
interactions between some objects.

The overall environment, i.e. target platforms, protocols, libraries,
development and languages will have an impact on the design as well.
Again, the idea of the design is to create a set of models that
represent the final step before implementation. They should describe
in detail what is to be implemented and how it is to be implemented.
Without factoring in the target language(s) and platform(s), there are
detailed design decisions that we will be unable to make, that take
direct advantage of the environment57.

Identify Maximal levels for Software
Engineering Goals
By now, we are familiar with some of software engineering’s design
goals, such as Reusability, Reliability and Extensibility. In order to
have a good design, we need to attempt to reach these goals in some
maximal way. This is because as we have to factor in environmental
issues into our design. These issues may ultimately hinder how well
we attain these software goals in absolute terms. In our attempt to
maximize our success, we should focus on strategic decisions and
attempt to limit or at least control the number of tactical decisions
made.

As we saw in previous chapters, the characteristics of object-oriented
development facilitate achieving our software engineering goals. Of
course, this is true only if we have accurately and effectively selected
abstractions, operations, interactions, how well we have employed
encapsulation, etc. These will all have an impact.

Identify and Employ Useful Patterns
As we saw in Chapter 6, a design pattern is a solution to a problem
similar to the one we’re trying to solve. There are various design
patterns that have been compiled over time, illustrating techniques
and guidelines for solving many technical problems. Patterns exist at
many different levels. There are patterns for solving technical issues
such as managing a group of objects (containers). There are also
patterns representing larger-scale issues such as architectures.
Leveraging patterns starts us on the road to our solution. As we’ve
seen, it should not be the expectation that patterns will be reused

57 The “environment” being referred to is that which will “host” our system, once operational.

Object-Oriented Analysis and Design 218

X52.9267-001 Not for Commercial Use

unchanged. Rather, the goal is to identify a similar pattern and make
the modifications necessary in applying it to the problem at hand.

Note: The activities that we’ve outlined here in Design are a good
representation of typical design activities. However, there may be
others. One of the advantages of understanding and developing a
process such as this is that it can be evolved and extended as
necessary, as we grow in experience.

Identify
environmental
opportunities

and constraints

Identify maximal
levels for
software

engineering
goals

Identify and
employ useful

patterns

Finalize the
interface and

implementation
of the classes

and objects

Refine classes
and

relationships

Analysis Models

Design Models

Fig 7.2 Design

 219 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Additional Development Phases
So far, we’ve created (and validated) the concept of the system, did
our analysis and created our design. What’s left? There are a number
of activities that we have to undertake on the road achieving an
operational system. Let us examine the additional phases below.

Implementation
The products of the design phases are models of the system that can
be directly translated into programming code. In the Implementation
phase, we perform this translation (and related activities) in
anticipation of the next phase. In Implementation, we have to commit
our detailed design to code, i.e. implement our design using one or
more programming languages. For our discussion, the activities of
implementation are below:

1. Implement the design: develop code, modules and components
2. Unit test
3. Maintain documentation

Implement the Design: Develop Code, Modules and
Components
The primary activity of this phase is to develop code, modules and
components, based on the design. These will be developed for the
target environment using the target programming language(s). It is
not uncommon for multiple languages to be used, leveraging the
strengths of each. Indeed, in the era of web development, this is
more the rule than the exception.

The architecture, (i.e. how the application is partitioned) and the
prioritization will dictate where, i.e. which functional area of the
system, development will logically begin.

Unit Test
A unit test represents the execution of a very isolated and localized set
of test cases, usually done by one or more members of the
development team. The goal is to have every unit, i.e. executable
partition, of the system tested before it is used in a larger context,
such as when integrated with other components or modules.

Maintain Documentation
Much earlier, the point was made that there was much iteration in
developing object-oriented software. That is true here in
implementation as well. Of importance is maintaining the
documentation that was produced as a result of Analysis and Design.

Object-Oriented Analysis and Design 220

X52.9267-001 Not for Commercial Use

Some of our implementation tasks may lead us to have to modify our
existing abstractions and relationships. Other issues may arise that
cause us to have to add completely new abstractions as well.
Regardless, we must keep our models synchronized with the system
being developed at all times. This is not necessarily a trivial task. To
that end, some systems allow developers to reverse-engineer code to
obtain models. As an aside, some systems also provide code-
generation capabilities, based on the models and target language.

Develop code

Unit Test

Update Documentation

Fig 7.3 Implementation

Deployment
In the deployment phase, we move from our development efforts
towards deploying our software in a production environment. Along
the way, we have formal testing that must be executed, such as
integration testing and user acceptance testing. Here, we are evolving
the implementation through successive refinements. As before, the
models should be kept in line with the system, or the documentation
will be obsolete and thus much less useful.

Deployment also includes the physical installation of the software (and
all necessary hardware). This will include the necessary authorizations
and permissions, obtaining space in a data center, etc. This may
include preparation and delivery of system documentation, including
specific installation documents, architecture documents, runbooks,

 221 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

manuals, etc. Strategies involving executing new and old systems in
parallel, retiring old systems, etc. would be executed in the
Deployment phase. At the end of this phase, we will have a fully
operational system.

Maintenance
In the Maintenance phase, we are managing the evolution of an
operational system (post-delivery). Once operational, there may be
additional phases of development that have to be undertaken, issue
resolution, brand-new requirements as a result of changing business
environments, etc. The process of determining how to implement new
requirements is the same as was done before for new development.
However, the fact that the system is operational requires significantly
more care, as compared to new development.

Why do we Need a Process?
In summary, our overall process describes various activities,
partitioned into phases. These activities reflect those of an individual
or small team those of the entire development team (larger scale),
under the direction of a Project Manager or equivalent.

We need to define a process in order to have the outcome repeatable.
We need to be able to define our activities in such a way as to be able
to repeat and evolve them. As requirements and environments
change, so should our processes evolve so that we can apply our
experiences and any new design patterns.

We can look at our discussion as reflecting two ideas. The first is that
we can partition an overall development effort into phases. The
second is that within each phase, we have specific activities. In both
cases, it is important for us to know how to partition and organize the
effort required to develop software in an object-oriented way.

Our overall lifecycle is now partitioned into these phases, each of
which embodies a different set of overall activities:

1. Conceptualization/Requirements Definition
2. Analysis
3. Design
4. Deployment
5. Maintenance

We could then use this phased approach to the lifecycle for overall
project planning and project tracking.

Object-Oriented Analysis and Design 222

X52.9267-001 Not for Commercial Use

In reviewing our software development process, we have decided to
partition our process in this manner and use this terminology to
express what each phase represents and also what activities occur in
each phase. This is not nearly as “cut and dried” as it may seem.
First, our overall process is inherently iterative. This means that even
though we have seemingly sequential phases, this may not be the
case in practice. This needs to be accounted for in the overall planning
process. Secondly, it is much more important that there is an
understanding of what activities are required for developing software,
without being to “hung up” on the names used for each phase. This
phased breakdown is very similar to other phased approaches we’ve
seen – the terminology may be different. In addition, some have
partitioned testing58 into it’s own phase. We have included it as a sub-
phase of Deployment (in addition to installation, etc.). It is far better
to understand that testing is important and decide logically where it
should go, or understand why it was placed in a certain phase.

The figures below depict two views of a project plan, a Gannt chart
and a tasks sheet. A project plan is a tool used to plan projects and
manage timelines. The views are from a popular project planning
application, Microsoft Project.

58 With the exception of unit testing.

 223 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Fig 7.1 Task Sheet

Object-Oriented Analysis and Design 224

X52.9267-001 Not for Commercial Use

Fig 7.2 Gantt chart

 225 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary
• A software development lifecycle describes the activities involved

in developing software.
• A development lifecycle may be separated into phases, such as

Conceptualization, Analysis, Design, Implementation,
Deployment and Maintenance.

• Object-oriented system development processes involve multiple
levels of detail focused on selecting and refining abstractions and
focused on the activities in the various phases of development,
through implementation and testing.

Object-Oriented Analysis and Design 226

X52.9267-001 Not for Commercial Use

Exercises
1. In your own words, provide a definition for a “phase” of a

development cycle.

 227 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 8

Creating and Using Object Oriented
Software Interfaces
We have already encountered the use of the word “interface”, many
times. In this chapter, we expand on that, extending the more
general definition we saw earlier. In addition, we will see that
interfaces can be generalized even further for use in distributed
systems (chapter 9).

An interface is a set of methods that are defined in a contractual way.
These methods represent a certain set of operations as required by the
environment. So, an interface represents a named collection of
publicly accessible methods. The interface offers no inkling as to how
any of these operations is implemented. Implementation is not the
job of the interface. This collection of operations (methods) is used to
specify a service of a class or component. Briefly, a component
(discussed in Chapter 9) is a physical part of the system comprising of
one or more objects. A component implements one or more
interfaces.

Practically speaking, an interface is a named collection of method
signatures with the possible inclusion of constants and user defined
types. The interface represents a contract that binds the client that
uses the interface, i.e. invokes methods defined in the interface, and
the server that provides an implementation for each method in the
interface. The contract states that if you invoke a method in an
interface and supply appropriate data types as parameters (input,
output or either), as per signature, then you will receive appropriately
typed values in return. This is all according to the signature of the
methods.

Object-Oriented Analysis and Design 228

X52.9267-001 Not for Commercial Use

This separation of interface and implementation should be familiar.
Earlier in the course, we discussed encapsulation as one of the
features of object-oriented development. With encapsulation, the
implementation is completely separate and hidden, with the interface
giving the only clues as to the capabilities of the object.

As we said earlier, the term interface is a general one. We will explore
an interface as a specialized abstract construct. We will also examine
an interface as it applies to the development of distributed systems.
First, we will revisit the notions of interfaces and implementation.

Interfaces vs. Implementation
Earlier in the course, we defined an interface as comprised of the
publicly accessible methods and fields of a class. To clarify further,
this means the methods and fields that are publicly accessible by code
in other classes, or more generally, code outside the class. By
outside, we mean code not within any methods of the class. The
interface of a class, as defined this way, is important to us because
that is the only view of the class from the outside, i.e. externally
visible. This is one of the advantages of the object-oriented paradigm.
We are able to hide the implementation of our functionality inside our
class. So, the only view of our class that others see is the set of public
methods and fields that are externally visible.

Applications in OO Design
There is another view of “interfaces” in the object-oriented paradigm.
This is a topic that will resonate with the Java knowledgeable among
us. For the rest of us, it is a feature that we should be aware of and
possibly add to our object-oriented arsenal. It is not covered in the
text.

Suppose we remove the set (or a subset) of the public methods
(names only) from a class place them in their own structure, similar to
a class. In other words, suppose we create a new abstraction (similar
to, but not equivalent to a class) that only has method names, but no
implementation? What would this mean? This would mean this
structure (our new abstraction) would imply some behavior.
Remember, we said a class’ behavior was “provided” by the methods
of our class, i.e. the functionality implemented by the methods. This
also means that any class that wanted to provide this functionality
would implement the methods in our structure. So, we’re saying, in
addition to defining abstraction that become classes, we can also

 229 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

create abstractions of certain behaviours of classes (i.e. methods) that
form part (or all) of the class’ overall interface.

In object-oriented languages that support interfaces in this manner,
(such as Java), this is similar to a class definition. In Java, it is called
an “interface” (surprise, surprise) and it introduces a new type to the
compiler, as a new class does. However, unlike classes, the methods
are not implemented in these structures. They are all abstract. This
makes this structure very similar to abstract classes.

Why do we care about this kind of abstraction? There are a few
benefits of being able to group sets of methods into structures such as
these. For example, we can have unrelated classes all implement the
same interface(s). As a result, these classes all share behaviours in
common. In addition, as they introduce new types to the compiler, we
may create references (not objects) which we may then use to
manipulate the classes that implement these interfaces.

Hmmm. You may (correctly) say that this is similar to the
polymorphic behavior we discussed earlier in the course. This is true.
However, there are significant differences. For us to have the
polymorphic behavior as discussed earlier, we must exploit the is-a
relationship of inheritance.

Let’s examine this further. Let’s say we create an abstract base class
with five (5) abstract methods, in addition to other stuff. As we
discussed before, in order for us to be able to create any objects of our
subclass(es), we must implement all five methods in the subclass. If
we don’t, the subclass will be abstract as well. Now, let’s say we
wanted to inherit from the superclass in a subclass but we wanted to
(or really, only needed to) implement three of our five abstract
methods. In order for us to be able to create objects of this
superclass, we would have to provide an implementation for each of
the other two methods, even though we did not need them
implemented in our subclass. So, in order to leverage polymorphism,
etc. as a result of inheritance, we have to be aware of inheriting stuff
we do not need. This is really an issue of the design of classes and
hierarchies. In languages that support interfaces, we have other
options. We could define an interface that has the three abstract
methods that are truly needed. The class we are trying to define (no
longer a subclass, as these interfaces have nothing to do with
inheritance) would then implement these methods if it need to. Once
you decided to implement an interface, you would then have to
implement all of the methods in the interface.

Object-Oriented Analysis and Design 230

X52.9267-001 Not for Commercial Use

Interfaces, as new “types” have a few other features. Java does not
support multiple inheritance but supports interfaces. C++ does
support Multiple Inheritance, but does not support interfaces such as
these. Hmmm again. Multiple inheritance could be a neat tool to have
in one’s arsenal. We haven’t discussed multiple inheritance very
much, other than an honourable mention early on. In multiple
inheritance, we have more than one base class. The other aspects of
inheritance stay the same. In Java and C#, we are allowed to
implement multiple interfaces, not inherit multiple classes. In
addition, as mentioned earlier, we are allowed to create variables that
are references of the interface, and use this reference to manipulate
objects of classes that implement that interface. This remains true
even if our classes implement multiple interfaces. This gives us an
alternative to Multiple Inheritance, without some of the pitfalls of
inheriting from multiple classes.

Anytime Multiple Inheritance or multiple implementation of interfaces
is employed, there are potential pitfalls that may arise. One of the
issues that may arise with incorrect use of Multiple Inheritance is the
following. Suppose you have a subclass that inherits from two
superclasses, each of which has a method with the same signature
defined. Due to the ambiguity, which method do we implement if they
were defined as abstract? If the methods were not abstract in the
super classes, which is actually called when we attempt to invoke a
superclass method? However troublesome this might be, it isn’t
limited to Multiple Inheritance. A similar issue may arise with the
multiple implementations of interfaces. If more than one interface has
a method with the same signature and both (or more than 2)
interfaces are to be implemented in one class, how do we resolve this
issue? Don’t forget, with these interfaces, all the methods in the
interface are abstract. The implementation occurs in the class.
Avoidance of these issues would seem to be the best defense.

Polymorphic Behavior and Interfaces
Above, we described interfaces as specialized abstract structures.
While these structures are treated differently from classes (depending
on implementation), we are able to take advantage of polymorphic
behavior involving these structures.

In languages that support interfaces as separate structures, each
definition of an interface introduces a new type to the compiler (as
with classes). Thus, we are able to construct references of the

 231 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

interface type that may be used to manipulate objects of classes that
implement the interface. This allows polymorphic behavior as we may
declare such a reference and use it in this way, without knowing the
specific type of the object referred to. An example would be a function
defined with its parameter being the reference of the interface type.
Any reference to an object of a class implementing this interface could
then be passed in as the parameter. Inside the function, the object
reference could then be used to invoke any method that was defined in
the interface (as in Java).

Interfaces themselves may also be part of an inheritance hierarchy.
This means that an interface may inherit from another interface. The
net of this is that the sub-interface (as opposed to the super-interface)
would present the all of the methods defined in the sub- and super-
interfaces. Any class implementing the sub-interface would have to
implement all of the methods from both interfaces if it was to be
concrete (i.e. able to be instantiated). As with an inheritance structure
comprised of classes, we are able to exploit the polymorphic behavior
that arises when we use a super-interface reference to manipulate
objects of a class that implemented sub-interfaces.

Interfaces in UML
Here is an example of a simple hypothetical interface in UML:

+operation1(in Parameter1 : unsigned short(idl), in Parameter2 : sequence(idl))
+operation2() : String
+operation3(in Parameter1 : char, out Parameter2 : int) : bool
+operation4() : char

«interface»
Object Services

Fig 8.1 UML

In this example, we have an interface with four methods defined.
Operation1 has two input parameters, Parameter1 and Parameter2.
Parameter1 is defined as short, Parameter2 as sequence. These
happen to be types defined as user defined types in the IDL (Interface
Definition Languages (IDL) are discussed later in this chapter).
Operation1 does not define a return value. Operation2 takes no
parameters and returns a String. Operation3 takes two parameters:
an input parameter (Parameter1 – defined as char) and an output
parameter(Parameter2 – defined as int). Operation3 returns a

Object-Oriented Analysis and Design 232

X52.9267-001 Not for Commercial Use

boolean (true/false) value. Operation4 takes no parameters and
returns a character.

Here is an example in UML depicting an object that implements this
simple hypothetical interface:

+operation1(in Parameter1 : unsigned short(idl), in Parameter2 : sequence(idl))
+operation2() : String
+operation3(in Parameter1 : char, out Parameter2 : int) : bool
+operation4() : char

«interface»
Object Services

Service Object

Implementation
of interface

Fig 8.2 Interface illustration

In this example, the object Service Object implements the Object
Services interface. The dashed line with the “open” triangle at the end
indicates the realization of the interface, i.e. the implementation of the
interface.

Support in OO Development
Interfaces as specialized, abstract structures, are supported by
languages such as Java. However, as you’ve seen, interfaces are quite
similar to abstract classes. In fact, in C++, which doesn’t support
interfaces in this way, but which does support Multiple Inheritance, we
can define an abstract superclass with no implemented methods.
Remember, for a class to be abstract, it only needs one abstract
method. For our approximation to work, we will define a class with no
implemented methods59. In addition, all of the methods in our
superclass would have to be declared public60. We could then add this
class as a superclass, using Multiple Inheritance. As a result, we
would be able to create references (and pointers – available in C++)
that we could use to manipulate objects of the classes that inherited

59 All methods would have to be abstract to have equivalence with the Java interface construct.
60 All methods in a Java interface are public by default.

 233 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

from this additional superclass. This would effectively give us the
same behavior61. Any class that needs to support this “interface”
would inherit from our abstract superclass.

If the language supports the abstract construct “interfaces”, you will
be prevented from implementing any of the methods defined in the
interface directly within the interface. The interface is completely
abstract – you may only implement them in the class that implements
the interface. In other languages, there is nothing language-specific
which will prevent someone from implementing a method directly in
the abstract class.

Some may argue that it may be useful to have some default behavior
“built-in” to the interface definition and thus, an abstract class
representing an interface, but with some methods implemented is fine.
However, in order to make the correct determination, we must look at
a few things. An interface in this context is a definition of various (one
or more) methods to be implemented by a class. It does not
represent the implementation of any of the methods. Keeping this in
mind (and as discussed above), the decision will be based on the
correct “factoring” of the methods and whether or not the cost of using
a class hierarchy is justified, vs. an interface, whether as a separate
structure or as an abstract class with no implemented methods.

Interfaces in Distributed Systems
By now, we’ve seen that the use of the term “interface” extends
beyond its use with classes. Interfaces, with the same meaning, are
also used by distributed system to define a contract between two
objects or components. The term “distributed” as used here means
that two objects or components, are communicating, are located on
physically different hosts (i.e. different computers). In fact, these
objects may be geographically distant. In fact, these object or
components may have been developed in completely different
languages, on completely different platforms. Regardless, as we’ve
said before, distant or not, these object are able to collaborate to
provide the overall functionality of the system. With encapsulation, we
have the separation of implementation and interface.

61 This is a limited equivalence. There is no enforcement of the class being completely abstract and all
methods being public in C++, as our “interface” would be a regular class. Java’s interfaces are completely
different constructs and behave differently from classes. Java enforces the rules differentiating interfaces
and classes.

Object-Oriented Analysis and Design 234

X52.9267-001 Not for Commercial Use

As before, the interface defines the visible behavior of an object (i.e.
public methods). Once the interface is defined, the implementation of
the interface could proceed in parallel with the development of the
client. The client need never know any details about the
implementation of the operations defined in the interface. Indeed, as
mentioned earlier, the development of the server (i.e. class(es)
implementing the interface) could be in a language different from that
used for the development of the client(s) and could be deployed on a
platform different from the one used in deployment of the client. This
is in keeping with the “spirit” of an interface. Systems incorporating
distributed objects, such as those using CORBA (Common Object
Request Broker Architecture – various languages, various platforms)
and/or RMI (Remote Method Invocation - Java only) utilize such
interfaces.

For interfaces utilized in distributed systems based on CORBA, each
interface is specified using an Interface Definition Language (IDL),
which is independent of the languages used for development. The IDL
specifies each method, their parameters and return types. Optionally,
the IDL for a particular interface may also include the definition of
user-defined types. As with other interfaces, there is no
implementation. Systems based on COM (Component Object Model –
various languages, MS platforms only) also use an interface and an
IDL to define the contract between components.
For interfaces utilized in distributed systems using RMI (Java only), the
interfaces utilized are Java interfaces (as discussed earlier).

This was a brief introduction to a new concept that you should be
aware of. In this course, we are creating a set of tools that will be at
our disposal when we are required to perform in our role as object-
oriented analysts, designers and developers. This view of interfaces
introduces another tool in our toolbox. If our target language is Java,
we will have a “direct translation” of this idea. If our target language
is C++, we can approximate this behavior by inheriting from an
abstract class that effectively defines our “interface” for any other
class. We can then approximate the behavior observed in Java. These
become additional design and architectural tools.

 235 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

module FinancialInstitution {

interface Customer {
string GetCustomerNumber();
...

};

interface Account {
string GetAccountNumber();
...

};
...

};

Fig 8.3 CORBA IDL example

Sample Project
In the next chapter, we revise our architecture to make our example
application component-based. Here’s a sneak peek at the interfaces
for two of our components. These interfaces describe the public
methods of each component. As above, the interface does not supply
any information regarding implementation.

+SearchByID() : <unspecified>
+SearchByName() : <unspecified>
+UpdateStudent() : <unspecified>
+AddStudent() : <unspecified>
+DeleteStudent() : <unspecified>
+AddSubject() : <unspecified>
+DeleteSubject() : <unspecified>
+ModifySubject() : <unspecified>
+AddMajor() : <unspecified>
+DeleteMajor() : <unspecified>
+UpdateMajor() : <unspecified>
+GetReport() : <unspecified>
+GetSystemInformation() : <unspecified>
+CalculateDiscount() : <unspecified>

«interface»
BusinessComponentInterface

Object-Oriented Analysis and Design 236

X52.9267-001 Not for Commercial Use

+SearchByID() : <unspecified>
+SearchByName() : <unspecified>
+UpdateStudent() : <unspecified>
+AddStudent() : <unspecified>
+DeleteStudent() : <unspecified>
+AddSubject() : <unspecified>
+DeleteSubject() : <unspecified>
+ModifySubject() : <unspecified>
+AddMajor() : <unspecified>
+DeleteMajor() : <unspecified>
+UpdateMajor() : <unspecified>
+GetReport() : <unspecified>
+GetSystemInformation() : <unspecified>

«interface»
DatabaseComponentInterface

These will be fully explained in the next chapter.

 237 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary

• An interface represents the visible behavior of an object, i.e. the
public methods.

• Interfaces exist in distributed systems development also.

• Interfaces (as an abstract structure) support polymorphism.

Object-Oriented Analysis and Design 238

X52.9267-001 Not for Commercial Use

Exercises
1. In your own words, explain what you would expect to happen if a
class that implements an interface is:

a) an abstract super class
b) a concrete super class

What would the effect be on subclasses of each?

 239 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 9

Object-Oriented Software
Architecture
Now that we have discussed how we identify and qualify candidate
classes and conduct design, it is important that we look at these
activities in a larger context. In this module, we will discuss areas
such as software architecture, frameworks and reuse and how they
impact (and exploit) our object-oriented approach.

In the last chapter, we discussed the term “interface”. We mentioned
that interfaces are also utilized in distributed systems, such as those
built utilizing CORBA62, DCOM63, EJB64 and RMI65. In this chapter, we
will explore components and distributed systems, as part of an overall
architecture.

What is Software Architecture?
The term “software architecture” means many different things to many
different people. As a result, before we go forward, we must settle on
a definition of this term that will serve as our backdrop.

We will define the overall software architecture as the collection of
high-level views of the significant software components of the system.
So, the architecture is comprised of different views. These views may
include (not mandatory) the logical view, implementation view,
process view and deployment view. Each of these depicts the
structure of the system from a different perspective. Thus, software

62 Common Object Request Broker Architecture
63 Distributed Component Object Model
64 Enterprise Java Beans
65 Remote Method Invocation (Java)

Object-Oriented Analysis and Design 240

X52.9267-001 Not for Commercial Use

architecture is also an abstraction, i.e. it describes system
implementation in terms of its structure, functional decomposition into
components (including their properties, etc.), interfaces, rules,
constraints and communication (including protocols). In order to
present this data, architects employ architecture diagrams. As an
aside, the software architecture is obviously one of the architectural
views for a system. For example, in addition to a system’s software
architecture, there is also its infrastructure architecture, describing the
infrastructure components supporting the system. This depicts the
hardware and communication aspects of the system, i.e. what
hardware systems are deployed, connectivity (LAN, WAN, Internet,
etc.), etc.

The difference between architecture and design is subtle. In
architecture, we care about the interactions between our significant
elements (such as components) with respect to overall scaling and
performance, whereas in design, we are more granular, designing and
paying attention to the detail of individual classes and components.

Object-oriented software architecture is therefore the activity
described above, with respect to object-oriented systems. Unlike
traditional architectures, object-oriented software architectures
emphasize the placement of distributed objects and interfaces,
components and interfaces, persistent objects and inter-object and
inter-component communication.

Object-Oriented Architectural
Elements
As outlined above, our software architecture will reflect the significant
components of our system. This implies that not everything in our
system is significant. In fact, in many cases, the elements of our
architectures are not individual classes. In this context, some classes
will be similar to “atoms”, where our architecture is depicting
“molecules”. Obviously, the “atoms” (i.e. individual classes) are
important parts of the “molecules”, but if the “molecules” are the level
of abstraction that our architecture is depicting, then they will be of
greater interest to us.

We have used the word “component” above, in our definition of
software architecture. A “component” is analogous to the “molecule”
above. A component is an architectural element, i.e. it is something
that is featured in (or included in) architectural diagrams and
descriptions. A component is a stand-alone, (i.e. deployable), part of

 241 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

a system’s implementation. This means, a component is somewhat
independent. A component is made up of one or possibly multiple
object instances. However, as with “atoms” and “molecules” above,
these object instances will possibly be omitted in the depiction of the
system’s structure. A component represents the collaboration of
related classes, the aggregate of which provides some significant
functionality of the system. As with classes, a component typically has
an interface that describes the methods exported (i.e. made public) by
the interface.

If we revisit the definition of object-oriented software architecture
above, we can now say that the object-oriented software architecture
depicts the placement of and interaction between the components of
the system, each component being comprised of possibly multiple
object instances.

Another term used frequently is “node”. At run-time, a “node” is
conceptually similar to a component. However, a node represents the
hardware on which a component is deployed, i.e. a processor or
device.

Designing with Components
In Chapter 6, we walked through the individual steps to get us to our
object-oriented design of our system. However, good our design was,
this was a trivial system for us to design. In the real world, systems
are significantly more complex (understatement). In many cases, in
order to provide the functionality, we need a construct that groups our
classes, each of which provides some of the overall functionality. This
construct that is required needs to be logical as well as physical. We
need to have something that we can use to logically group classes that
are collaborating. For deployment, we need to have a physical
construct that we can use to manage this group of classes. Use of
components also helps in organizing and deploying elements of the
system. Components may be deployed in the same location, in
geographically diverse locations. The use of components allows the
classes that collaborate to be packaged effectively for deployment. A
“package” is a container to manage elements, such as classes and
components. Deploying in this way is termed “distributed”. Note – we
now have to expand our use of the term “object”. The term “object”
refers to instances of classes and components.

The objects within a component may also be grouped logically into
layers. Each layer, composed of one or more objects, provides

Object-Oriented Analysis and Design 242

X52.9267-001 Not for Commercial Use

services to its immediate outer layer. Conversely, each outer layer is
a client of its immediate inner layer. In addition, layers can only
communicate with their immediate neighbours, i.e. the immediate
inner or outer layer.

Unlike layers, inside components, tiers are logical constructs that
represent physically separate components. A client/server system has
two tiers, the client and the server. In a three-tier system, the
components take multiple roles. The second (or middle) tier is both a
server to the first tier and a client to the third tier. In turn, each tier
may also be comprised of multiple components. Generalizing this, we
may have multi-tier systems, where there are multiple client/server
pairs. Similar to layers, communication only exists between
neighbouring tiers – we would not be allowed to “skip” or circumvent a
tier.

Using Components
Components are important “building blocks” of our overall
architecture. But how do we apply our knowledge thus far into
designing and using components? In order to do this, we must note
the following features of components:

1. Components are run-time (stand-alone) executables

2. A component is typically larger than objects. It could be an object,
but it is typically composed of many objects.

3. A component has a well-defined, external interface that is distinct
from the internal implementation. As we discussed in the last chapter,
(encapsulation), the implementation is hidden inside the component.
Encapsulation is a cornerstone of object-oriented development. All
that is visible to clients is the interface. Also as discussed last time,
the interface is defined in a contractual manner. Each of the
component’s methods is defined in terms of its signature. In addition
to the operations, the interface may also include user-defined types.

4. A component is comprised of one or more objects. Each of these
objects is an instantiation of a class. From a few sessions ago, we
know that we may have multiple copies of an object, each with it’s
own state. However, the component is not something that we
instantiate into multiple copies. We would not create multiple
instances of a component, each with its own state the way we could
with objects.

 243 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

5. Components are usually designed with some consideration given to
the environment in which the component will run. This is typically not
the case when designing classes. Component designers have to
consider what will “contain” their component. They may have to take
advantage of services provided by the environment (or container).
Component environments are typically standardized. This enables a
designer to incorporate additional components into a design. This
facilitates software reuse, as components may collaborate, yielding
more functionally useful architectures. Components will also demand
certain services from the environment and in turn have to provide
certain services to the environment.

6. Components may support multiple interfaces. In fact, some
components support an interface that allows other components to
supply a query that returns the name of each interface implemented
by the component.

7. Components may be considered lightweight or heavyweight. A
lightweight component is one that relies on external software to
accomplish its primary tasks. A heavyweight component includes all of
the services it needs to operate in a given environment.

8. Components represent physical “packaging”. Classes represent
logical abstractions. Components live in the physical world, i.e. at run-
time. Classes do not.

Given these features of components, which objects should be
packaged in to a component? The answer depends on many, many
variables. In earlier sessions, we discussed class design, i.e. what
abstractions make good classes. As part of that exercise, we
discussed the metrics such as completeness, primitiveness, etc. We
said that the class should have a set of methods representative of the
implied functionality and that there should be as many as required to
give a complete view (cohesiveness and completeness). With
components, we have to take a similar approach. A component is
comprised of possibly many objects. However, a component is viewed
from the outside as an architectural unit. Thus, a component provides
a “block” of functionality, i.e. some particular behavior. As such, all of
the objects that are included in the component should contribute to
this overall functionality.

Object-Oriented Analysis and Design 244

X52.9267-001 Not for Commercial Use

As you can see, this is similar to the evaluations that we have to do for
objects. This is as it should be, as we should not have “weaker”
object-oriented designs as a result of using components.

Components and Distributed Systems
As with objects, at run-time, components are also collaborating to
provide the overall functionality of the system. However, with each
component a stand-alone executable, we are able to deploy
components on different platforms. Systems deployed in this manner
are termed “distributed”.

Earlier in this section, we mentioned that unlike objects, components
have to interact with their environment. Thus far, we have discussed
components in the context of providing an implementation for the
operations in the interfaces only. However, in order for components to
be deployed on different platforms and interact with other components
and objects, there needs to be some lower-level services that are
provided which would enable or facilitate this communication. Name
and directory services, obtaining access to remote methods,
translation and transmission of parameters and return values, security
and license services, etc. Imagine these in the context of two
platforms as different as a mainframe and a PC. Assume that there
are network protocols and media to consider in terms of connecting
the two platforms. In addition, other services may be necessary, such
as distributed transaction processing, persistence and the ability to
recover from failures (fault tolerance), etc. The need for these
services arises from the increasing complexity of modern day systems
and the need for these systems to be reliable. These are services
typically provided by the environment in which the component runs. If
each component designer had to implement all of these services, a
distributed architecture would be near impossible to achieve, not only
because of the added complexity of each component and the added
work of creating the component. In addition to these, each
component designer could possibly implement these in a proprietary
way. If they did, there would be no interoperability.

Each component designer is more able to focus on the functionality the
component is provided, instead of that and everything else. In fact,
the expertise that would be required to develop “everything else” is
decidedly non-trivial. Since the environment provides services such as
these (and others), the environment needs to be able to communicate
with each component. The environment, to some degree, has to keep
tabs on each component, registering the component when it starts,

 245 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

being aware of its lifetime and its destruction. The environment may
allow a component to be started once it recognizes a request for an
operation defined on an interface implemented by the component.
The environment needs to interact with the component. As a result,
there may be additional, separate interfaces that need to be
implemented by the component. These additional interfaces (one or
more) could be comprised of methods called by the environment. In
addition, there may also be methods provided by the environment that
have to be called by the component to keep the environment aware of
the component’s state. The environment may provide “factories”,
which are able to launch a component once a request for an operation
on that component arrives.

The environment may utilize various strategies to achieve the goal of
secure and reliable component execution. Enterprise Java Bean (EJB)
containers (EJB = Java component) are an example of an environment
in which components execute. Servers such as BEA WebLogic and IBM
WebSphere are EJB containers. Based on the EJB container
specification published by Sun Microsystems (provided a standards
based environment), EJB containers such as these provide the services
mentioned above (among others) to each component they host. This
frees the component designer to focus on the business functionality
they need to implement. CORBA implementations, such as Iona Orbix
provide similar services for CORBA components written in many
different languages. In each case, the “container” or environment is
based on a standard. This allows the reuse of components developed
by others, as long as they conform to the standard.

In addition to the design of the components and their interactions with
their environments, there is another aspect to consider. Components
are deployed onto nodes. The deployment strategy could have impact
the system’s overall performance greatly. Decisions have to be made
about what processor or device configurations to use, in addition to
where geographically they should be located. There is also potential
for the strategy to include component or node clustering. In
clustering, we have multiple instances of the same components on
different nodes. When a request comes in, one of the nodes satisfies
it, based on a random selection, a round-robin selection, where each
node is selected one after the other in a cyclic fashion or load-
balanced, where the node with the least workload is chosen. Each of
these options has positives and negatives. The environment may also
supply these or similar services. Again, decisions made regarding
these areas may impact system performance greatly.

Object-Oriented Analysis and Design 246

X52.9267-001 Not for Commercial Use

Components in UML
As described above, software architecture depicts one or more views
of a system. This depiction is typically via diagrams. In UML, we can
use a deployment diagram to model our architecture. This diagram
will describe the components and nodes of the system with the
connection between nodes and components. A simple deployment
diagram is as follows:

Component A

Node

Component B Component C

1

1

*

*

*

*

Simple Architecture Diagram

Fig 9.1 UML components

In this example, we have one node (a “server”) and three client
components.
Even though we have essentially equated “node” and “component” for
the purposes of this chapter, strictly speaking, a node may consist of
many components. A node represents a processor or device on which
components may be deployed. To capture the case in which multiple
components are deployed on the same node, we could modify the
previous diagram as follows:

 247 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Component A

Node

Component B Component C

1

1

*

*

*

*

Simple Architecture Diagram with multiple-component node

Component1 Component2 Component3

Fig 9.2 Component interactions

The node here could represent an EJB server (“container”) or some
hardware on which multiple CORBA or COM+ components were
deployed.

Let us modify the example from last time, changing the implementer
of the interface from an object to a component as follows:

+operation1(in Parameter1 : unsigned short(idl), in Parameter2 : sequence(idl))
+operation2() : String
+operation3(in Parameter1 : char, out Parameter2 : int) : bool
+operation4() : char

«interface»
Services

Implementation
of interface

Service Component

Fig 9.3 Component interactions

Object-Oriented Analysis and Design 248

X52.9267-001 Not for Commercial Use

In this example, the component “Service Component” implements the
interface “Services”. The operations are the same as presented in
Chapter 8.

There is a “shorthand” version of this modeling that may also be used.
We may capture the API (application programming interface) of a
component as follows:

ServiceComponent Services

Interface

Fig 9.4 Component interfaces

The horizontal line with the circle at the end represents an interface
that is implemented by the component. Obviously, the details of the
interface, i.e. the operations contained therein, are not apparent using
this form.

Using this shorthand method, we may model a component that
implements multiple interfaces as follows:

ServiceComponent Services

OtherServices

Fig 9.5 Multiple interfaces

 249 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Sample Project

In Chapter 6, we progressed through our design phase with the
underlying assumption being that we were building a single executable
running on one platform. Everything would be in one executable, with
the exception of the actual data in our relational database. Another
realization is that everything would be running in the same process,
including the calls to our database.

Suppose we decided to “component-ize” our simple example. How
would we change our existing architecture to partition our system into
components? Where would we draw the line?

Informally, we already have three software layers at work in our
application66. The user interface is one layer (presentation layer), the
validation rules, etc. are another (middle layer) and the database
interactions are a third (database layer). As a result, we could
physically separate our applications into three distinct parts, running
on three separate platforms. Each of the three parts would correspond
to one or more components. We would redesign our application to
become distributed.

One of the major activities when designing with components, other
that deciding what components will exist, is defining component
interfaces. From our discussion above, we know that the interface will
represent the functionality provided by the component. We also know
that a component may include many classes, so the component’s
interface may not “match” any single class’ interface. Let us revise
our architecture, identify our tiers and discuss the functionality and
interfaces.

66 Since everything is in one executable and not distributed, we use “layers” instead of “tiers”, as discussed
earlier.

Object-Oriented Analysis and Design 250

X52.9267-001 Not for Commercial Use

Architecture
Let’s begin by describing the tiers included in our architecture.

Tier 1
The first tier would be for presentation. This tier is responsible for
presenting the user interface. This means, this tier would be
responsible for communicating with the user. Tier 1 would be a client
of tier 2, our middle tier that has our “business” logic. As we
mentioned above, Tier 1 would only communicate with Tier 2.

Tier 2
Tier 2 contains all of our “business” logic. This includes all of our
validation routines, calculation routines, etc. This layer accepts inputs
from tier 1 and translates them into calls to Tier 3. This is reversed for
the trip back. Tier 2 is a client of Tier 3 and provides a service for Tier
1.

Tier 3
This tier is provides all database services. This remains the
abstraction of the physical relational database.

Interfaces

Tier 1 - Presentation
We do not need to define an interface for Tier 1. Tier 1 will not have
any clients. Tier 1 will be a client of Tier 2.

Tier 2 - BusinessComponent
The interface to Tier 2 (BusinessComponent) needs to support all of
the methods that the presentation layer would need to invoke in order
to present information to the user and to accept information from the
user. Let us look at the objects that currently service our presentation
layer. Tier 1 can only interact with Tier 2. So, the interface for Tier 2
needs to be able to support all of the requests needed by Tier 1. This
includes the following:

• Adding new students
• Modifying students’ information
• Deleting students
• Searching for a student by name
• Searching for a student by ID
• Obtaining data for reports
• Maintaining the overall list of subjects

 251 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

• Maintaining the overall list of majors
• Obtaining system information

Even though our example is simple, there is a bit of work left to do to
refine the interactions between the objects in our system. This will
obviously have an effect on our new architecture as well. With that in
mind, let’s define some general methods in our interface for our
component. We can diagram our interface for Tier 2 as follows:

+SearchByID() : <unspecified>
+SearchByName() : <unspecified>
+UpdateStudent() : <unspecified>
+AddStudent() : <unspecified>
+DeleteStudent() : <unspecified>
+AddSubject() : <unspecified>
+DeleteSubject() : <unspecified>
+ModifySubject() : <unspecified>
+AddMajor() : <unspecified>
+DeleteMajor() : <unspecified>
+UpdateMajor() : <unspecified>
+GetReport() : <unspecified>
+GetSystemInformation() : <unspecified>
+CalculateDiscount() : <unspecified>

«interface»
BusinessComponentInterface

Business Component

The return-types of the methods are left as <unspecified> as this is a
level of detail to which we have not progressed sufficiently.

Tier 3 - DatabaseComponent
In the example interface for Tier3 (DatabaseComponent), we see that
the methods defined there are defined to support the activities
undertaken by the BusinessComponent.
For the sake of the example, we’ll take a very simplistic view of our
component and its interface. Let’s assume that the interface supports
executing various SQL statements, in addition to managing
transactions. This means, the BusinessComponent would be
responsible for creating the SQL statements that would be executed by

Object-Oriented Analysis and Design 252

X52.9267-001 Not for Commercial Use

the DatabaseComponent. We’ve also included a method
“ExecuteStoredProd” to indicate that we may implement some of our
SQL operations as stored procedures physically on the database
server. The interface to the component is below.

DatabaseComponent

+ExecuteSQLStatement()
+ExecuteStoredProc()
+BeginTransaction()
+Commit()
+RollBack()
+EndTransaction()

«interface»
DatabaseComponentInterface

Here as well, the return-types of the methods are left as
<unspecified> as this is a level of detail to which we have not
progressed sufficiently.

 253 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter Summary
• Architecture describes the collection of high-level views of the

significant software components of the system.

• Components are the building blocks of an overall architecture.
They represent one or more objects and run as stand-alone
executables.

• Components are well encapsulated. They have a well-defined

interface that is distinct from its implementation.

• Components may be deployed on different platforms.

Object-Oriented Analysis and Design 254

X52.9267-001 Not for Commercial Use

Exercises
1. When would an instance of a component be created?
2. When would you have multiple instances of a component?
3. Compare two objects collaborating in the same program, running

on the same platform to two components running on different
platforms. List (with a brief explanation for each) three issues
that the component-based system will have to overcome that
the “single-program” system will not face.

 255 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Chapter 10

Object-Oriented Methodology in the
Industry
In the last nine chapters, we have discussed object oriented analysis
and design. In the industry today, object-oriented development has a
strong foothold. There are now many environments that support
object-oriented or object-based development. In addition, as we will
discuss below, a specialized process for developing object-oriented
development has been produced and is available – the Rational Unified
Process.

Object-oriented development does not exist in a vacuum. In the
typical enterprise, there are many platforms – one or more mainframe
systems, a few to many midrange systems which could be Unix based
(any one of the flavours) or AS400 based. In addition, there could
also exist a plethora of microcomputer-based systems, running various
versions of Windows, with the possibility of some Macintosh systems
as well. To this mix is usually added various databases.

Increasingly, new system requirements dictate that there needs to be
software that is able to aggregate the various pockets of business
intelligence that exists on the different platforms. In many cases, the
enterprise is also looking to further leverage their existing platforms
for better returns on their original investments. This increase in
complexity affects software development in another way as well.
Software is constructed based on requirements. Another way of
looking at this is to say a system will only be as good as its
requirements were defined. One of the largest problems facing
software development efforts is the issue of incomplete or ill-defined
requirements. If the requirements are ill-defined or incomplete, then
the project runs the risk of delivering software that is unusable to

Object-Oriented Analysis and Design 256

X52.9267-001 Not for Commercial Use

some degree. We’ve all seen the old cartoon that depicts the sharp
contrast between what the users wanted and what the systems
development team delivered. In addition, if the requirements are
incomplete, then the scope of the project could keep growing (scope-
creep). This will severely limit what is delivered, if anything, for the
project will have to keep expanding to address new requirements. The
strategies for combating these issues could be a book in itself, as there
are many, many variables involved in managing the requirements for a
non-trivial project. Indeed, there are books dedicated to this topic.

Coupled with the increasingly shorter development lifecycles (they
always want it yesterday), you can see what a distressing state of
affairs could result. Nowadays, leveraging Information Technology
(IT) (representative of development, infrastructure etc.) is seen as a
competitive advantage. It is no longer seen as only a business
expense. In order to provide a better customer experience, reduce
costs, improve turnaround time, speed time to market, etc.,
enterprises are increasingly putting pressure on the IT departments to
produce. For this reason, IT managers are looking for ways to
improve the IT return on investment (ROI) and to make their senior
management happy. This includes addressing issues of
interoperability, leveraging existing platforms, more easily
maintainable code, to name a few.

Object-oriented development methodology (inclusive of component-
based systems methodology) can come to the rescue. We list a few
specific examples below.

Requirements Gathering
This is not object-oriented per se. However, utilizing use-cases may
help to alleviate some to the issues that arise when other
requirements gathering strategies are used. A “use-case” is a scenario
from the user’s perspective. This means that it uses the language
familiar to the user and describes some aspect of the overall
functionality. So, the user requirements for the entire system will be
comprised of many use-cases, each of which describes some facet of
the system. The details of use-cases are beyond our scope here.
However, as each use-case details some aspect of the system
(including positive and negative cases) in the language of the user, it
may be easier to define the appropriate scope, as opposed to using a
functional specification document. In many cases, it is sometimes
difficult to get an overall view of the behavior of the system from the

 257 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

functional specification. By its very nature, a use-case gives you a
view of what the expected behavior of the system should be.

Code Reuse
There are many aspects of object-oriented development that have an
impact on code reuse. Let’s think about this. From Chapter 1, we
know that the major aspects of object-oriented development are the
following:

• Abstraction
• Hierarchy (inheritance and polymorphism)
• Encapsulation (information hiding)
• Modularity
• Persistence

Let’s look at the major aspects again, in the context of code reuse, as
follows:

Abstraction
An Abstraction is a representation of a more complex structure by a
simpler one that emphasizes only the elements of the more complex
structure that are deemed relevant in the context of the particular
system being designed. We’ve seen where it is critical to choose the
correct abstractions for our systems. These abstractions become the
classes that are the “building-blocks” of our design. We’ve also seen
that it is critical that we evaluate the quality of our abstractions. How
does this apply to software reuse? We may reuse our code in a few
ways. For example, if we have classes at lower levels of abstraction,
meaning they provide relatively narrowly scoped functionality, we may
use objects of these classes to provide this functionality wherever it is
needed. If we design relatively monolithic classes that include
“everything but the kitchen sink”, i.e. at a higher level of abstraction,
it is less likely that we will effectively reuse these classes as we may
not need exactly the same behavior again. We may need a slightly
different behavior, which we would be unable to easily obtain because
of the design of the class. So to promote reuse, we would want to
concentrate on appropriately scoped classes. Since we have a
collaboration of objects at run-time, not necessarily one or two, we
can appropriately factor the overall functionality into appropriately
sized classes.

Hierarchy
Hierarchy and code reuse go together very well. If you remember,
this aspect of object-oriented development covers Inheritance,

Object-Oriented Analysis and Design 258

X52.9267-001 Not for Commercial Use

Composition, Aggregation and Association. The underlying idea
utilizes the discussion of appropriate abstractions (correctly scoped)
outlined above. If the abstractions (i.e. class definitions) are at the
correct levels of abstraction, then we may create new classes based on
inheriting, aggregating or associating previously defined classes (or
any combination of the above). With Inheritance, we directly extend
previously defined functionality, adding the specific functionality that
we need. We have access to the functionality of our super class (or
classes) in addition to the functionality of our sub-classes. We can
create increasing complex inheritance hierarchies. Of course, with
polymorphism thrown in, we may use existing code with new
subclasses. If we do not want to use Inheritance, we may still employ
Aggregation or Composition. With these, we may use the “restaurant
menu” approach, i.e. pick objects from existing well defined classes
that we need, bringing them together and assembling them to get the
functionality we need. Whichever approach is chosen, well-defined
classes are the key. From a testing standpoint, we also benefit, as if
each of our “building blocks” has been tested and certified, the testing
will center on either our sub-classes (if we used Inheritance) or the
class that results from assembling these objects (if we used
Aggregation or Composition). These are definitely very high on the
reuse scale.

Encapsulation
Encapsulation describes the separation of the interface from the
implementation. As we saw in Chapter 8, this applies equally to
objects and components. How does this facilitate software reuse?
There are two perspectives to consider – the client that invokes an
operation defined in the interface and the object (or component) that
implements that operation. With code reuse, we are looking to be
able to reuse or re-deploy previously developed software. As we’ve
discussed previously with abstractions, we have a similar approach we
have to take with interfaces as well. Interface, as with abstractions,
have to be well defined. Having multiple interfaces with similarly
defined operations is not the only issue. Having to have multiple
similar implementations is a result of this. The interfaces need to be
well defined so that the objects or components that implement their
operations will not be redundant.

Modularity
Modularity would seem to have an obvious impact on code reuse.
Modularity is the ability to decompose a system into a set of
collaborating objects. As before, each object is a specific instance of a
class. The ability to have an operational system comprised of
cooperating objects is Modularity. Modularity, as it applies to code

 259 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

reuse, describes the ability for use to have multiple objects
collaborating, even if that included multiple instances of the same
class, each of which was acting as a server providing the same
functionality, but to multiple clients. There would be no conflict
between these object (static variables not withstanding).

Components and Reuse
Everything we have discussed thus far may be applied to components
as well. If we have a well-defined component that provides some
functionality, we would be seeking to employ this component wherever
we required this functionality. As with objects, it is therefore critical
that components, though consisting of one or more objects, be at the
correct level of abstraction as well. A relatively monolithic component
will tend to be less effectively reused than one that is defined more
granularly.

The important thing to remember is that a component is independently
executing. Components should be designed to preserve this fact. In
addition, the components should have clearly defined functionality.
The “containers” that support component-based development also
support multiple client connections, again promoting reuse.

Code Maintenance
Code maintenance has been the topic of many a debate. In a nutshell,
systems are rarely static structures that never change. On the
contrary, in many cases, there are significant changes that may arise
over time. These may be due to changing market conditions or
regulatory requirements, to name two. As a result, software needs to
evolve. Unfortunately, many people attempt to address this fact of life
when the changes need to happen. By then it is usually too late.
Maintainability needs to be designed in. Object-oriented development
has some features that facilitate this. Let us revisit the major aspects
of object-oriented development in the context of code maintenance.

Abstraction
The selection of quality abstractions will impact code maintenance as
well, for essentially the same reasons as listed above. If the
functionality of the system is “factored” correctly into classes, then
changes to one class should not affect other unrelated classes in the
system. In fact, this should be a design goal. Coupling, as we
discussed in Chapter 6 will have an impact. Loosely coupled classes
will be less affected by changes made to one class. Unnecessary
coupling and dependencies between classes lead to code that is less
easy to maintain.

Object-Oriented Analysis and Design 260

X52.9267-001 Not for Commercial Use

Hierarchy
Some of the features of Inheritance facilitate code maintainability,
while some do not. For example, if I have an inheritance hierarchy in
place and I need to accommodate a new sub-class, then I only have to
add my new sub-class, not change any of the existing classes. In fact,
if I am exploiting polymorphism, I may not have to change any
existing code at all. In addition, if I have to add new functionality that
is to be available to all classes in my inheritance hierarchy, I could
easily add this new functionality to the super-class. In general, once it
is in the super class, it is available to all sub-classes. However, if I
have to make changes to a super-class or re-factor the functionality in
any of the existing classes in my inheritance hierarchy, the task
becomes very different. This is because inheritance hierarchies are
inherently tightly coupled. This means changes to super-classes may
cause existing code to break. Before, we noted we could take
advantage of adding code to the super-class. This is a “double-edged
sword”. Such changes must be made judiciously. In essence,
inheritance hierarchies need to be well-defined also. The correct
decisions must be made about the definition of the super-classes or
super-classes. If not, the maintainability of the system may be
compromised. Aggregation and Composition, being loosely-coupled do
not have the same issues. With Aggregation and Composition, we
seek to be able to make modifications by changing the assembly of the
building blocks with as little effect as possible.

Encapsulation
The separation of the interface from the implementation has many
direct benefits. Encapsulation dictates that “clients” will never have
access to the implementation details of the “server”, whether object or
component. Therefore, once we define the interface, “clients” may
include code to invoke the operations defined in the interface.
However, due to Encapsulation, we may change the implementation of
these operations at any time with no effect on the clients. Keeping the
interface constant means not removing or changing the signature of
any methods defined in the interface, or removing the interface itself.

Modularity
Here, we see the benefit of Modularity in terms of having multiple
objects with concurrent lifetimes, as they are aggregated etc. into
providing the newly required functionality.

Components and Maintainability
The ideas expressed above may be carried over to components also.
We may look at maintenance in terms of how easily we are able to

 261 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

maintain the objects that comprise the component. We may also look
at maintenance in terms of what functionality the component “serves”.
In either case, the discussion above, if extended to components,
holds.

Object-Oriented Technology at Work
Object-oriented technologies are showing up in many places these
days. There are many tools and technologies that have been
developed, each of which is becoming more accepted in the industry.
We highlight some of these below.

Rational Unified Process
Development methodologies are not uncommon, in the least.
However, in recent years, one development process has come to the
fore in the industry. It is a process developed by some of the people
at the forefront of object-oriented development. It has many aspects
taking into account the detailed development processes, as discussed
in Chapter 7. What follows is a brief introduction to the Rational
Unified Process.

Taken as a whole (and if applied correctly), we see that the object-
oriented approach to systems development is an effective tool that
may be used for complex systems development, in addition to having
features that may address some of the largest challenges that we face
when undertaking non-trivial software development.

Rational Software as put forward a software development process
termed the Rational Unified Process (RUP). It seeks to address many
of the deficiencies in general software development methodology,
resulting in the achievement of process goals as described in our
discussion of the development process in Chapter 7. The RUP outlines
the following:

• Guidance for ordering team activities
• Specification of which artifacts should be developed and when
• Tasks for individual developers
• Tasks from the team perspective
• Criteria for monitoring and measuring a project’s products and

activities

The RUP is geared to producing quality object-oriented software using
a well-defined process that is repeatable. It employs an interactive

Object-Oriented Analysis and Design 262

X52.9267-001 Not for Commercial Use

developmental approach, as opposed to the traditional “waterfall”
approach.

The RUP is developed and maintained by Rational Software and
integrated with its suite of software development tools. The RUP also
represents a process framework that can be adapted and extended to
suit the needs of an organization.

The RUP embodies many of the concepts and software best practices
we have discussed thus far. These include iterative development (as
we’ve discussed earlier), requirements management, architecture and
the use of components. In addition, the RUP uses a use-case centric
approach, where use-cases define the behavior of the system67. The
RUP also includes quality of process and product, change
management, process configuration and tools support A large part of
the process is the development and maintenance of models of the
system, using UML. UML is used to express the artifacts required by
RUP.

Rational Rose
Rational Rose is Rational Software’s tool of choice to capture, manage
and display the models created in the RUP in UML. Rose also allows
the generation of code from models and the generation of models from
code, thus making it easier to keep your code base synchronized with
your design. This will also allow your system to be able to evolve from
the code or from the design or both.

Let us look at some areas in which object-oriented technology has a
presence.

Object-Oriented Databases
In Chapter 6, we integrated a relational database management system
into our object-oriented system. While this is obviously possible (and
done every day by developers), it is requires us to map our objects
into a two-dimensional set of tables. As we have seen, there isn’t
always a direct correlation between classes in our model and tables in
our database. In addition, relational databases have certain rules. In
order to produce a join, there must be keys in common, i.e. the
primary key of one table must be a foreign key in the other, etc. This
is not a constraint of the object model. This is a constraint of the
relational database. How may we efficiently persist and query object

67 Use cases are not required.

 263 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

systems without having to do this translation between object and
relational models? Is there a better way?

Object-oriented databases were introduced in the mid-1980’s to
address these problems. They were designed to store and manipulate
objects optimally. Instead of focusing on the data model, as all
relational systems do, object-oriented database management systems
focus on the object model. Based on this, object-oriented databases
are able to manage very complicated models with complicated
relationships. They are able to manage many different kinds of
objects, as defined by the model.

Generally, a library of routines is supplied with a particular vendor’s
relational database management system (RDBMS). This library allows
us to interact with the database. In general, we are able to invoke
those routines, passing them SQL statements68 for execution. Some
of these libraries may be vendor and database specific, applying only
to that particular database. These may accept extensions to SQL that
are specific to that vendor. Others, like ODBC, provide support for a
standard way of querying a relational database. They are still vendor
specific, but the only support the SQL syntax that is “portable” across
relational databases.

With object systems, we have a similar situation. Object databases
are optimized for the transfer of objects between client and server.
This access is provided transparently through an object manager
supplied by the vendor. This provides the necessary navigation and
management. The object manager interface includes operations to
manage transactions, execute queries, etc.

As with relational databases, object-oriented databases have standard
languages defined for them as well. Object-oriented databases have
Object Definition Language (ODL) to specify how an object model is
defined in the database, Object Manipulation Language to specify the
application-object manager interactions to manipulate objects, and the
Object Query Language to specify how applications query object-
oriented databases. These are analogous to relational databases’ Data
Definition Language (DDL), Data Manipulation Language (DML) and
SQL for querying.

68 In many cases, the ability to create tables, drop tables, etc. are also allowed via these routines.

Object-Oriented Analysis and Design 264

X52.9267-001 Not for Commercial Use

Chapter Summary

• Object-oriented development seeks to remedy many of the
issues in the industry, such as software quality and code reuse.

 265 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Appendix 1

Use Cases69
Simple statements are useful for capturing and presenting
performance, hardware, deployment and usability requirements, etc.
However, it is difficult to use simple statements as the only means of
capturing functional requirements. These requirements describe how
the system behaves in response to user and external system inputs70.
Use cases are an excellent way to capture and express a system’s
behavior.

Use cases are a formal way to capture the interaction between those
providing inputs to the system (actors) and the system itself. Actors
may be (but are not limited to) users of the system. An actor’s role
represents some functionality of the system that will be exercised.

A use case is a description of the interaction between an actor and the
system. It contains at least one narrative description of a scenario. A
scenario is an example of specific usage, one in which the actor
supplies the input and the system demonstrates an observable output.
Use cases are not required for object-oriented development, but the
may provide important insights into the relationship between the
functionality and areas such as testing. A testing scenario could be
developed from a use-case scenario in a straightforward way.

A use case may have many scenarios. There is usually one main
scenario and possibly many alternate scenarios. The alternate
scenarios in the use case may represent exception handling or other

69 First introduced by Ivar Jacobsen.
70 Functional requirements are more dynamic and typically require accompanying details in order to
understand then

Object-Oriented Analysis and Design 266

X52.9267-001 Not for Commercial Use

options presented in the main scenario. Thus, the main scenario may
be looked at as the “positive” case or path, compared to the others.

A use case is written to express what the expectations of the system
are, i.e. what the system is expected to do. This is a view of the
behavior of the system from the outside. A use case is not concerned
with implementation details. Rather, a use case is concerned only with
the inputs to and outputs from the system, without describing how the
inputs are transformed into the outputs.

Use cases are written in the language of the problem-space (domain).
This means we would not expect to find technical jargon in the use
case document, per se. A use case is a way of capturing requirements
and the requirements express what the expectations of the system
are. For all involved, the scenarios in the use case documents should
be clear and easily understood.

Use Case Models
Relationships between use cases are captured in a use case diagram.
The collection of the use case diagrams is termed the use case model.

A use case is depicted by an oval with the name of the use case
underneath. An actor is a stick figure. As above, the actor represents
the role that a user71 may have with the system. The arrow from the
actor to the use case shows the actor providing input to the use case.
Therefore, the arrow denotes input.

Actor1

UseCase1UseCase2
«uses»

UseCase3

«extends»

Fig A1.1 Use case example

71 Remember, a user is not necessarily a person

 267 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Use cases may be extend other use cases or may include other use
cases. These describe association between use cases. If case A
extends case B, the actor invokes case B and can go on to case A. If
case B includes case A then the actor invoking use case B also invokes
use case A automatically.

Use case diagrams only show structural relationships between use
cases. They do not capture dynamic relationships.

Once the initial information is captured in the use case diagram, other
diagrams may be brought to bear on the problem. Other diagrams
such as sequence diagrams72 may be used to depict a more detailed
flow of information from actor to system, with respect to a timeline.

Of course, use cases must also be analyzed. Use cases are used to
capture requirements. The analysis of use cases allows us to identify
classes and objects that will provide the functionality described in the
use cases. In addition, we are also able to determine the
responsibilities, attributes and associations, look at certain
architectural structures and mechanisms, etc. The outputs are the
realizations73 and models depicting the static view of the system.

72 These sequence diagrams are similar to those used to capture dynamic information about objects.
73 A use case realization is a special use case that provides a description based on, and in terms of the
system’s architecture.

Object-Oriented Analysis and Design 268

X52.9267-001 Not for Commercial Use

Appendix 2

Brief UML Reference

Introduction

Any non-trivial application needs to be designed in such a way that its
structure facilitates design goals such as scalability, reliability,
extensibility, etc. Their structure (i.e. architecture) must be clearly
defined to allow unambiguous interpretation. This will allow relative
ease of maintenance (among other benefits) as the application
evolves.

A good structure benefits applications of any size, but, it is particularly
useful for larger, more complex applications. This is true because
looking at the structure of the application will provide a quicker grasp
of the capabilities of the application. In turn, understanding the
capabilities of the application and how it is structured will allow
designers to leverage code reuse, as it will be easier to grasp how the
application is organized into modules and/or components, each having
the responsibility of some specific area of the overall functionality.

There are various ways of describing the structure of an application.
One could review all the code in the application and derive an
understanding of the application. While unambiguous, this method is
surely the most tedious method that one could apply. Another
suggestion would be to use words to describe the structure of an
application. Someone could create text descriptions of the application
that could be as detailed as necessary. While potentially easier to
manage than reading the code itself, one would still have to read all

 269 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

this documentation to grasp the structure of the application. This
activity would still be very tedious and time consuming. Instead, we
use modeling, to depict the structure of an application. As they say, a
picture is worth a thousand words.

The Unified Modeling Language (UML), is designed to help you
communicate the specifications of software systems. These
specifications include their structure, design and behavior. With UML
(especially via various available UML tools), you can perform an
analysis of the system’s requirements and create a design that
satisfies them, using UML’s visual language to communicate the
results.

This visual language is comprised of a standard set of elements. The
importance of standardization is that everyone looking a UML diagrams
consisting of these elements will have the same understanding as to
what each element means. This fact alone greatly improves the level
of communication one can achieve using UML.

UML has many standard diagram types that can be used to create
models of systems of widely varying architectures, on varying
hardware and software platforms. This inherent flexibility allows you
to use UML to model single-tier, multi-tier, web-based, or just about
any architecture. You can also use UML with any of the popular
development languages such as C++, Java, C#, VB.Net, etc., including
even non-object oriented languages.

With UML, you can create platform independent models. In addition,
you can also create methodology-independent models. There are
various methodologies for software development. Software
development methodologies define the formal steps one should take in
developing software, from the gathering and analyzing requirements
to the design and deployment of the solution. One important
characteristic of UML is that UML’s diagrams are used to help analyze
and to communicate the architecture of the system, regardless of how
you performed the analysis or created the architecture. Plus, since the
diagramming elements of UML are standardized, various tools can
interpret the system’s specifications. UML’s role is to communicate the
results of our efforts in analysis, design and deployment of our
system.

As this is a brief overview of UML, we’ll concentrate on many “filling
out” the UML diagrams and notations introduced in the text. As a
result, this appendix will not cover every aspect of UML notation.

Object-Oriented Analysis and Design 270

X52.9267-001 Not for Commercial Use

UML Diagram Types
UML defines many different diagram types. We can group these into
different categories. With UML, we can look at the static structure of
our application. We can also use UML to look at the behavior of our
application, i.e. how it behaves at run time, or behavior scenarios
(dynamic diagrams). Finally, with UML, we can also look at how we
group areas of our application for organization. Let’s examine each of
these categories below.

Application Structure Diagrams
These diagrams represent the static structure of an application. The
specific diagram types included in this category are as follows:

• Class Diagrams
• Object Diagrams
• Component Diagrams
• Deployment Diagrams

Application Behavior Diagrams

• Sequence Diagrams
• Activity Diagrams
• Collaboration Diagrams
• State Diagrams
• Use case Diagrams

Organization Diagrams

• Package Diagrams
• Subsystem Diagrams

As this is a brief overview of UML, we will look at simple examples to
each, along with a description and overview of its usage.

Class Diagrams
Class diagrams show the static structure of a class. Since a class is
the blueprint for an object, the class diagram allows us to see what the
internals of the object looks like.

In the class diagram, we specify the name of the class, in addition to
the methods and fields contained in the class. We can identify the
access levels of the methods, in addition to their parameter lists and
return types.

Class diagrams are also used to communicate the relationships
between classes. These relationships may be associative (Association)

 271 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

or hierarchical (Inheritance, Aggregation or Composition). Within the
class diagram, we use various elements to indicate where a
relationship exists, what type of relationship it is and any other
information relevant to the relationship, such as the cardinality of an
associative relationship.

Diagram Elements and Syntax
We use class diagrams to depict the structure and relationships of
classes in our architecture. Some examples of these are as follows:

Basic Class Structure

+GetName() : string
+SetName()

-age : int
-firstName : string
-lastName : string

Student

Basic class element

In this structure, we see that the class element is separated into
components for the name, attributes, methods (operations) and
responsibilities (not shown). In class diagrams, attributes, operations
and responsibilities are the most common features you’ll use to depict
abstractions (classes). Each class is named – the name of the class
appearing in boldface followed by an underline (the first
compartment). The attributes of a class, if included, are below the
name of the class in the next compartment. The names of the
attributes are preceded by symbols which denote their visibility
(access level):
+: public
- : private
#: protected

The type of the attribute may also follow the name of the attribute,
preceded by a colon (see examples above).

In the next (separate) compartment is the list of operations (methods)
of the class. As above, each operation is preceded by the symbols
denoting access level, and may be followed by its return type.

The last compartment of a class element is used to communicate the
responsibilities of the class. Class responsibilities are basically free-
form text.

Object-Oriented Analysis and Design 272

X52.9267-001 Not for Commercial Use

Inheritance

To depict inheritance relationships, the open arrow with the solid line
is used. The arrowhead is placed at the superclass, with the arrow
pointing from subclass to superclass.

Composition

In a composition relationship, there is usually a rule which governs the
validity of the container with respect to the contents. Sometimes this
rule has to do with the number and/or type of objects that are
contained. If this rule is violated, the relationship is void. To depict
this relationship, we use a solid diamond as an arrowhead. The
diamond is placed at the class that represents the container, i.e. the
arrow is pointing away from the class representing the contents
(aggregate).

 273 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Aggregation

Aggregation and composition are quite similar, obviously. In
Aggregation, there are no constraints governing the validity of the
relationship. For example, we could have zero or more of the
contained objects in our container – zero would be valid, as would any
other number. To show this, we use an open diamond as our
arrowhead. As above, the diamond is placed at the class that
represents the container, i.e. the arrow is pointing away from the class
representing the contents (aggregate).

Association

An associative relationship refers to a dependency between classes,
the strength of which can vary. In the above case, we’re depicting a
“many to many” relationship, between Student objects and Account
objects. Each link between classes can include symbols to denote the
cardinality (multiplicity) of the association. Examples of these symbols
are as follows:
1 : Only 1 (could be any numeral)
0..1 : 0 or at most 1
1..1 : At most 1
1..* : At least 1
.. : Many to many

Object-Oriented Analysis and Design 274

X52.9267-001 Not for Commercial Use

Interfaces
As you create more complex architectures, you may want to explicitly
communicate the separation of the interface from the implementation
details. In UML, you can use interface elements to communicate this
separation. Interface elements appear as follows:

This diagram reflects that the account class implements the
AccountManager interface. A class implementing an interface may
also be depicted as follows:

 Note: classes may implement (realize) many interfaces.

Object Diagrams
Object diagrams show the static structure of the object, but they don’t
stop there. Objects exist at runtime, not at design time. So, in
addition to the structure of the object, object diagrams are used to
communicate the behavior of the object and how objects interact with
each other. Each object’s behavior is based on the methods contained
in that object. Objects interact with each other by invoking (calling)
the public methods that are defined in other objects. The object
diagram provides a visual representation of what methods are being
called by which objects, depicting system behavior at runtime, though
without definition of order (sequence) or time.

Diagram Elements and Syntax
Basic object diagram

This simple diagram shows the structure of the object. The name of
the object is in the first compartment, followed by the attributes in the
next. Note, in object diagrams, the name of the object is underlined,
unlike in class diagrams.

Object Interaction

 275 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

In this diagram, we’re depicting the interaction between two objects,
one of class Student and the other of class Account.

Component Diagrams
A component is a stand-alone, (i.e. deployable), part of a system’s
implementation. A component can be looked at as a runtime
“container”, comprised of the objects of various classes. The
component provides some functionality that is based on the
functionality “contributed” by the included classes. A component is
also an element of a distributed system. As our architecture becomes
distributed, we find that we need some way to look at our architecture
from the standpoint of which components are interacting with each
other, i.e. at a higher level than that of individual classes and objects.
This higher level view allows us to more quickly obtain information
about our system than would be obtained otherwise.

Diagram Elements and Syntax
Basic Component

Component1

Here we see the component element, showing the name of the
component

Component with Interface

As with classes, components can also implement interfaces, as shown
here

Object-Oriented Analysis and Design 276

X52.9267-001 Not for Commercial Use

Component interaction

This diagram expresses the interaction between two components, via
Component2’s interface

Depicting Components and Classes
A component’s functionality is provided by its classes. We can say a
component is dependent on its classes. To show this relationship, we
can create a component diagram showing this dependency, as follows:

Deployment Diagrams
Many of the diagrams we discuss serve to help us visualize the
structure and behavior of our software systems. Deployment
diagrams help us visualize the physical layout of our systems. It
shows the relationships between the software and hardware elements
of the system.

Deployment diagrams consist of nodes that reflect a unit of
computation such as a piece of hardware. The lines between nodes
represent links that show communication pathways between nodes.
Within each node of a deployment diagram are components (see
component diagrams above).

 277 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Deployment diagrams are useful when you need to show how
components in your system will be or are deployed. This information
is obviously different from the logical information reflected by many of
the other UML diagrams we’ve seen.

Diagram Elements and Syntax
Basic Deployment Element

In this example, we see the node element including the name

Node Interaction

Each of the lines between the nodes represents the physical
communication (i.e. connection) between the nodes.

Nodes and components
Nodes are composed of components. To show the dependency of the
nodes to their constituent components, we can use a variation of the
deployment diagram, as follows:

Object-Oriented Analysis and Design 278

X52.9267-001 Not for Commercial Use

Sequence Diagrams
A sequence diagram conveys the sequence of messages (method calls)
for a group of objects, as those objects collaborate to satisfy some
requirement of the system. Another way of characterizing a sequence
diagram is to say that it depicts the explicit sequence of methods calls
for a group of objects as those objects collaborate to satisfy a use
case.

In a sequence diagram, there is an explicit start point and end point.
These correspond to the start of the scenario and the end of the
scenario. As the scenario progresses, objects are recruited for their
functionality via message passing (i.e. method calls). The sequence
diagram makes it easy to identify the individual steps taken, from one
object to another.

Because a sequence diagram explores the “path” through a number of
objects to satisfy a use case, the sequence diagram is not intended to
show all of the methods that are defined on each object in the
scenario. It serves only to highlight those methods that are explicitly
called to satisfy the use case. The focus of the sequence diagram is
the “sequence” of the messages only. It shows the flow of logic as we
traverse through the scenario, which allows us to record and validate
the logic.

 279 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Diagram Elements and Syntax
Basic Sequence Diagram

Object1 Object2 Object3 Object4

Message1()

Message2()

Message3()

Message4()

Message4()

Message2()

Message3()

Message1()

Object5Message4()

Object lifeline

Method call

Method return

Each object in the sequence is represented by the object element at
the top of the diagram. Extending down from each object is its lifeline,
i.e. the line downward represents the object’s lifetime. Each long
rectangle that is positioned on the lifeline represents the “activation”

Object-Oriented Analysis and Design 280

X52.9267-001 Not for Commercial Use

of the object, i.e. the time in which a method on the object is
executing.
Each message (i.e. method call) is represented by the arrows going
from one object’s activation to another. Each line implicitly represents
the method’s call and return. However, a method’s return can be
explicitly denoted by using a dashed line in the opposite direction to
the invocation. This dashed line would be placed at the bottom of the
object’s activation rectangle.

Sequence diagrams can also depict asynchronous method calls
(synchronous by default). In the case of asynchronous calls, instead
of a “full” arrowhead, a “half” arrowhead is used for each “half” of an
asynchronous message.

 281 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Activity Diagrams
An activity diagram is similar to flow charts, except they include the
ability to model parallel behavior. Activity diagrams are useful when
depicting the behavior of multithreaded applications, or other complex
processes.

Diagram Elements and Syntax
Basic activity diagram

In the activity diagram, as in the State diagram, the starting point is
the initial node, a filled in circle. While not required, the presence of
this node makes it easier to comprehend the diagram. The filled circle
with an enclosing circle signifies the ending point of the diagram.

Between the starting and ending nodes in the diagram is where we
find “activities”, “flows”, “forks” and “joins”. An activity is something
that occurs (an action). When something occurs, that places our
object in another state, during which something else occurs.
Transitions between one action state and another is depicted by the
arrows between states.

Object-Oriented Analysis and Design 282

X52.9267-001 Not for Commercial Use

Sometimes, as a result of an occurrence, there are two “paths” that
may be followed simultaneously, i.e. parallel activities. The horizontal
bar with one arrow coming toward it and two or more arrows going
away to other action states indicates a fork, i.e., the start of parallel
processing. At the end of parallel processing, a join is executed. The
join is a horizontal bar with two or more arrows leading toward it, with
one arrow leading away.

Collaboration Diagrams
Collaboration diagrams show the interaction of objects in an
application, i.e. the message flow (method calling). They provide a
view of a collection of collaborating objects. This view allows us to see
the functionality provided by each object, aspects of the flow of logic
between objects and also roles that objects can assume within their
lifetimes.

Unlike sequence diagrams, collaboration diagrams focus on the
relationships between objects. The name alone implies that we would
use such diagrams to help us understand how a group of objects
collaborates to accomplish some goal.

 283 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Diagram Elements and Syntax
Basic Collaboration Diagram

1:
 M

es
sa

g e
 1

1:
 M

es
sa

ge
1

In Collaboration diagrams, each rectangle represents an object. The
lines between the objects in the diagram are links that represent
relationships (association, aggregation or composition) between
objects. The arrows indicate method calls and their respective
directions. The numbers associated with each arrow indicates the
sequence in which the methods are called.

State Diagrams
As the methods defined for an object are invoked, the values of the
object’s internal data might change. Each of these changes, in
response to a method call, constitutes a different state that the object
is in. Throughout an object’s lifetime, it may inhabit many states, with
the change from one state to another being a “transition”.

As designers, we may want to focus on an object and look at what it
takes to move from one state to the next, what the values of the data

Object-Oriented Analysis and Design 284

X52.9267-001 Not for Commercial Use

are in various states and how the object interacts with other objects in
our system as we travel from state to state. The UML diagram that
allows us to do this most easily is the UML State diagram. With the
state diagram, we use UML elements to depict the various states of
the object, as well as the state transitions. A state diagram combines
states and method calls in order to depict all possible object states
during its lifetime. The state diagram will help us visualize how the
object responds to invocations of its methods.

Diagram Elements and Syntax
Basic State Element

Each “state” is represented by this element. The name of the state is
included within.

State Transitions
As the object progresses through its lifetime, its state changes. This
transition from state to state is represented by lines between states,
as shown below:

Each state diagram begins with the object in an initial state, as
denoted by a solid circle. Each diagram also ends with the object in a
final state, denoted by a solid circle, enclosed within another circle.

Use Case Diagrams74
Use case diagrams provide a generalized view of how a system will be
used. Each use case represents a specific usage scenario that is a
sequence of interactions between user and system, the goal being the
satisfaction of some requirement. The collection of use cases would
thus provide all of the requirements for a system. One of the benefits

74 For a more complete discussion of use cases, see Appendix 1

 285 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

of use case diagrams is that it allows anyone to see a visual
representation of the intended usage and functionality of the system.

Package Diagrams
A package is a fundamentally group of related classes. The grouping
is used to organize classes into something more manageable. The
relationship between classes in a package is not only limited to the
class relationships we’ve seen before, i.e. Association, Inheritance,
Aggregation or Composition. The “relationship” that exists between
classes in a package may be simply that they share responsibility for
providing some aspect of a system’s functionality. For example, you
could create a package of utility classes. Each class provides some
“utility” functionality that is used in one or more places in the system.
Another perspective is that a package is a logical grouping of classes,
i.e. there is some “logic” to why they’re grouped together.

Many languages, such as Java and the Microsoft .Net languages
extensively use packages to organize classes. When the functionality
that exists in one or more classes in a package is required, the
package is utilized. In so doing, the class name is prefaced by the
package name.

A package diagram is a diagram that shows groups of classes and the
dependencies between them. A dependency between packages
implies that there is a dependency between two or more classes in
each package.

Diagram Elements and Syntax
Basic Package Diagram

This diagram shows the package element, including the name.

Package Interaction

Package1 Package2

As we mentioned before, if one class in a package is dependent on a
class in another package, then the first package is dependent on the
second package. The example above shows this relationship between
Package1 and Package2.

Object-Oriented Analysis and Design 286

X52.9267-001 Not for Commercial Use

Packages and Classes
Packages represent a group of classes. This relationship between
packages and classes can be represented by drawing the contained
class elements within the package element.

Subsystems
In general terms, the system is the solution you’re designing.
Depending on the complexity of the system, a system may be viewed
as being a collection of sub-systems.

UML provides a set of elements that we can use to depict as system as
a group of subsystems. Diagrammatically then, a system is depicted
as an aggregation of subsystems, using the same aggregation
elements as with class diagrams.

Diagram Elements and Syntax
Basic Subsystem

As you can see, the subsystem element is very similar to the package
element. The difference is that the subsystem element contains a
stereotype, which is the text in the diagram between the << and >>
symbols. The stereotype is used to indicate whether the element
represents the system (as a whole) or a subsystem.

System/Subsystem Relationship
Systems are comprised of subsystems. This relationship is
represented as a composition of subsystems, using the composition
relationship element as described earlier (class diagrams).

 287 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Appendix 3

Object-Oriented GUI Design Elements
Graphical User Interfaces (GUI’s) have been around for many years
now. They were brought into the mainstream by Apple Computer with
its Macintosh line and further popularized by Microsoft’s Windows
environment.

GUI frameworks have also become popular. These frameworks are
presented as part of an Integrated Development Environment (IDE),
which allows users to write code, debug and build software. There are
many commercially available GUI frameworks in IDE’s. Some of the
more popular are Microsoft’s Visual Studio for Windows, X Windows for
Unix, CodeWarrior and JBuilder for Java. These frameworks exist to
simplify the construction of a user interface for an application.

A GUI framework consists of various abstractions representing tools
used in building user interfaces. These tools consist of text boxes,
scroll bars, buttons, sliders, checkboxes etc., many of which are
displayed in the two figures following. Each abstraction has various
operations and attributes defined on it based on the appropriate
semantics. For example, the value of a checkbox would not be the
same as the value of a text box. A checkbox may have two or three
states, depending on implementation. Those states would be on, off,
indeterminate (or true, false, indeterminate). The value of a textbox
would be the current contents of that textbox. Each element of a GUI
is an object, i.e. an instance of the class in which various operations
and attributes are defined.

GUI frameworks allow you to “draw” elements (or controls) directly
onto windows, specify windows (dialog windows, etc.), define menus
and menu items, etc. Typically, this graphical construction generates
the code corresponding to the GUI elements. This is far simpler than

Object-Oriented Analysis and Design 288

X52.9267-001 Not for Commercial Use

trying to construct and place these elements from the bottom up. In
many GUI frameworks the elements share a common superclass
element, such as a superclass representing a generic control. In this
way, the framework and developers can exploit Polymorphism in the
workings of the framework and in the development of applications.

There are various mechanisms available in GUI frameworks. One of
the most important is the event handling mechanism. The elements of
a GUI respond to events. Events are triggered by a variety of sources.
Some of these are as follows:

• Mouse events
• Keyboard events
• Menu events
• Window activation and deactivation events
• Window resizing events
• Initialize and terminate events

This event-handling mechanism allows us to use the mouse to
navigate among the various controls, as each movement, click, drag,
etc., translates to an event. Each event is then handled as
appropriate, based on the context in which the event occurred.

GUI frameworks, as part of their overall capabilities, give developers
the opportunity to implement custom code in the event-handling
routines. It should be noted that GUI frameworks typically allow
developers to add custom code to handlers for events that are already
defined. You are typically not allowed to define new events or
handlers. Each control will have a set of events appropriate for it. For
example, a text box will have handlers for events that buttons will not
have.

The following pages show some of the more common GUI design
elements, as found in the more popular IDE’s.

 289 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Option1

Check 1 Check box

Radio button

List box

Combo box

Vertical Scroll Bar

Text box

Group box

Tab control
Tab

Fig A2.1 Some GUI elements

Object-Oriented Analysis and Design 290

X52.9267-001 Not for Commercial Use

62

OK

Spin buttoin

Button

Toolbar buttons

Grid

Progress bar

Progress bar

Mouse pointers

Slider

Fig A2.2 Some more GUI elements

 291 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Fig A2.3 Simple Windows application

Object-Oriented Analysis and Design 292

X52.9267-001 Not for Commercial Use

Glossary

Analysis
A phase of the overall software development process (lifecycle) in
which high-level models of the system (based on the system
requirements) are created. These models are built with an
understanding of the functionality the system is to provide, again
based on the system requirements.

Design
A phase of the overall software development process (lifecycle) in
which the high-level models from the Analysis are made more concrete
by factoring in the environment, constraints, non-functional
requirements, cost, time-to-market, etc. The output of Design is a set
of models that are the basis for writing code.

Procedural Languages
Computer languages in which problems to be solved by a computer
are broken into more manageable pieces and each piece is solved with
a unit of code.

Hierarchical Decomposition
Also called “algorithmic decomposition,” hierarchical decomposition is
the method by which procedural languages break complex problems
into manageable pieces. Hierarchical decomposition is the cornerstone
of top-down design methodology in Computer Science, and its advent
allowed complex problems (some orders of magnitude greater than
those previously undertaken and solved) to be dealt with more
routinely.

Abstract Data Types
User-defined types, e.g. structs in C, records in Pascal, etc. They
allowed programmers to create types that were abstractions of
elements of the problems they were trying to solve. These abstractions
further allowed the aggregation of primitive types (i.e. integers,
characters, etc.) in a way that was more meaningful to human
designers and coders. They also resulted in more readable and
organized code.

 293 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Classes
Blueprints for object.

Objects
Instances of a class. They may also be viewed as the members of a
class.

Attributes
An object’s data are its attributes.

Methods
The means to manipulate an object’s data. Methods provide the
functionality of the object.

Abstraction
A description of a system that does not focus on all details, only on
those that are relevant, like a simple schematic drawing.

Hierarchy
A hierarchy is an ordering of items. Inheritance, in which the “is a
kind of” relationship is examined, is one way to develop a hierarchy.

Encapsulation (information hiding)
The ability to separate the interface of a class from the implementation

Object-Oriented Decompsition
The ability to model an operational system based on cooperating
objects, which is closer to reality that the earlier hierarchical
decomposition would allow.

Persistence
Storing the value of an object for later use. An object’s class and
current state may be saved for later use.

Concurrency
Ability of objects from the same class to have simultaneous existence.

Typing
Classifying variables by the kind of data they hold (integers, strings,
etc.).

Object-Oriented Analysis

Object-Oriented Analysis and Design 294

X52.9267-001 Not for Commercial Use

An analysis of the system requirements that is based on object-
oriented thinking. This is an analysis based on the object-oriented
decomposition, as opposed to the top-down hierarchical decomposition
of structured analysis.

Object-Oriented Design
Design that is also based on object-oriented thinking. In the design
phase, we are concerned with making the models developed in the
analysis phase more concrete and refined, readying them for
development.

Object-Oriented Programming
The development of programming code also based on object-oriented
thinking, using an object-oriented language and environment (C++,
Java etc.).

 295 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Bibliography

Booch, Grady: Object-Oriented Analysis and Design with Applications
2nd Edition. (1994), Benjamin/Cummings Publishing Company, Inc.,
California

Booch, Grady, Jacobson, Ivar and Rumbaugh, Joseph: The Unified
Modeling Language User Guide (1999), Addison Wesley Longman Inc.

Weisfeld, Matt: The Object-Oriented Thought Process (2000), Sams
Publishising Company, Inc.

McConnell, Steve: Code Complete (1993), Microsoft Corporation

Krutchten, Phillippe: The Rational Unified Process An Introduction, 2nd
Edition (2000), Addison Wesley Longman Inc.

Harmon, Paul and Morrissey, William: The Object Technology
Casebook (1996), John Wiley and Sons Inc.

Hofmeister, Christine, Nord Robert and Soni, Dilip: Applied Software
Architecture (2000), Addison Wesley Longman Inc.

Eckel, Bruce: Thinking in C++ (1995), Prentice Hall Inc.

Lau, Yun-Tung: The Art of Objects Object Oriented Design and
Architecture (2001), Addison Wesley Longman Inc.

Kafura, Dennis: Object-Oriented Software Design and Construction
with Java (2000), Prentice-Hall Inc.

Page-Jones, Meilir: Fundamentals of Object-Oriented Design in UML
(2000), Addison Wesley Longman Inc.

Treese, G Winfield and Stewart, Lawrence C.: Designing Systems for
Internet Commerce (1998), Addison Wesley Longman Inc.

Object-Oriented Analysis and Design 296

X52.9267-001 Not for Commercial Use

Conallen, Jim: Building Web Applications with UML (2000), Addison
Wesley Longman Inc.

Fowler, Martin and Scott, Kendall: UML Distilled Second Edition
(2000), Addison Wesley Longman Inc.

 297 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Index
Abstract data Type, 15, 134
Abstraction, 10, 21, 25, 27, 28, 34, 35,

36, 37, 38, 45, 50, 51, 52, 54, 55, 71,
75, 99, 100, 101, 133, 134, 135, 137,
138, 139, 140, 141, 145, 147, 149,
150, 151, 175, 181, 202, 203, 209,
210, 211, 212, 213, 216, 228, 229,
240, 250, 257, 258, 259, 287

Activities, 210, 211, 213
Additional Considerations, 149
Address, 56, 72, 74, 75, 77, 98, 100,

101, 102, 123, 124, 125, 155, 156,
157, 161, 163, 164, 165, 169, 170,
171, 172, 175, 176, 177, 183

Aggregate, 45, 46, 89, 92, 111, 152, 169,
177, 178, 179, 183, 197, 201, 241, 255

Aggregation, 16, 44, 45, 46, 59, 80,
81, 89, 91, 92, 105, 111, 136, 140,
144, 147, 197, 209, 212, 258, 260

Algorithmic Decomposition, 15
Analysis, 1, 21, 23, 25, 27, 51, 52, 53,

60, 72, 131, 186, 208, 209, 214, 215,
216, 219, 221, 225

Architectural Elements, 240
Architecture, 9, 10, 133, 141, 207,

215, 216, 219, 220, 234, 235, 239,
240, 241, 242, 244, 246, 249, 250,
251, 253, 262, 267

Associations
Mandatory, 91
Optional, 91

Associative, 89, 90, 91, 103, 168, 169,
202, 213

Associative Relationships, 89
Attributes, 10, 25, 32, 33, 34, 39, 40,

60, 84, 93, 96, 97, 98, 99, 100, 114,
123, 124, 127, 133, 141, 142, 148,
150, 156, 159, 160, 163, 164, 167,

169, 170, 171, 175, 182, 201, 202,
207, 210, 213, 267, 287

Availability, 12, 23
Base class, 81, 82, 87, 95, 159, 160,

168, 202, 229, 230
Behaviour, 29, 30, 32, 33, 39, 41, 43,

87, 89, 93, 108
Behaviour Analysis, 52, 58
Benefits, 35, 47, 50, 51, 71, 88, 141,

229, 260
Benefits of Class Modeling, 71

C++, 9, 10, 20, 25, 34, 56, 61, 65, 66,
67, 73, 85, 107, 142, 230, 232, 233,
234

Capturing object behaviour at run-time,
114

Cardinality, 90
Class, 9, 13, 22, 23, 29, 30, 31, 32, 33,

34, 35, 38, 39, 40, 41, 43, 46, 47, 50,
51, 55, 58, 60, 61, 62, 63, 64, 65, 66,
67, 71, 72, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101,
103, 104, 105, 106, 107, 108, 109,
111, 115, 123, 124, 125, 126, 127,
129, 130, 131, 132, 133, 135, 136,
137, 138, 140, 141, 143, 145, 147,
148, 149, 150, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 174, 175, 176, 177,
178, 179, 180, 181, 182, 183, 184,
201, 202, 203, 205, 209, 210, 211,
212, 213, 215, 227, 228, 229, 230,
231, 232, 233, 234, 238, 242, 243,
249, 257, 258, 259, 260, 287
Class and Object Interactions, 66
Class Associations, 89

Object-Oriented Analysis and Design 298

X52.9267-001 Not for Commercial Use

Class diagram, 22, 23, 72, 80, 104,
115, 130, 167, 213, 215

Class field, 106, 107
Class hierarchies, 33, 81, 141
Class Modeling, 67, 79
Class semantics, 32
Class Structure, 60
Class-Object Relationships, 111
Identifying classes, 51, 182
Identifying classes Identifying Classes

and Objects, 51
Instance field, 106, 129, 130
Instance field vs. Class fields, 106
Instances, 30, 33, 34, 47, 58, 66,

67, 79, 85, 98, 105, 106, 107, 108,
115, 119, 129, 130, 148, 153, 154,
182, 186, 254, 258, 287

Responsibilities, 53, 55, 75, 76, 96,
97, 99, 137, 202, 210, 211, 212, 267

Classes and Objects, 9, 29, 47, 51,
52, 53, 55, 60, 68, 85, 132, 133, 147,
209, 210, 212, 213, 215, 216, 217, 267

Client, 12, 140, 147, 148, 149, 227,
234, 242, 246, 250, 258, 259, 263

Client/Server, 242
COBOL, 9, 14
Code, 14, 15, 18, 20, 23, 24, 25, 46, 50,

58, 61, 66, 71, 88, 89, 92, 131, 144,
146, 153, 219, 220, 228, 256, 257,
258, 259, 260, 262, 264, 287, 288
Code Maintenance, 259

Cohesion, 202
Collaboration, 115, 118, 119, 129
Collaboration Diagram, 118, 119,

129
Collaborations, 204, 213
Collection Classes, 152
Collections, 152

Lists, 152
Maps, 152

COM, 234, 247
Comments, 11
Completeness, 109, 138, 203, 205,

243
Components, 15, 40, 46, 47, 58, 89,

142, 151, 216, 219, 233, 234, 235,

239, 240, 241, 242, 243, 244, 245,
246, 247, 249, 253, 254, 258, 259,
260, 262
Components and Maintainability, 260
Components and Reuse, 259
Components in UML, 246

Composite, 111
Composition and Aggregation,

44, 89
Differences between Aggregation and

Inheritance, 89
Composition and Aggregation

Composition, 43, 44
Composition and Aggregation

Composition, 45
Composition and Aggregation

Composition, 46
Composition and Aggregation

Composition, 59
Composition and Aggregation

Composition, 80
Composition and Aggregation

Composition, 81
Composition and Aggregation

Composition, 89
Composition and Aggregation

Composition, 89
Composition and Aggregation

Composition, 89
Composition and Aggregation

Composition, 89
Composition and Aggregation

Composition, 89
Composition and Aggregation

Composition, 91
Composition and Aggregation

Composition, 92
Composition and Aggregation

Composition, 99
Composition and Aggregation

Composition, 105
Composition and Aggregation

Composition, 111
Composition and Aggregation

Composition, 144

 299 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Composition and Aggregation
Composition, 167

Composition and Aggregation
Composition, 201

Composition and Aggregation
Composition, 258

Composition and Aggregation
Composition, 260

Conceptualization, 208, 221, 225
Concrete, 23, 25, 27, 47, 131, 210,

231, 238
Constraints, 18, 21, 22, 23, 27, 111,

131, 186, 215, 216, 240, 262
Containers, 147
Controls, 93, 287, 288
CORBA, 234, 235, 239, 245, 247
Costs/Benefits, 91
Coupling, 136, 202, 259
CRC Cards, 55
Data dictionary, 210, 213
Data Management Methods, 181
DCOM, 239
Decomposition, 15, 21, 22, 25, 27,

34, 48, 51, 145, 209, 240
Default Constructor, 108, 110
Dependencies, 213, 216, 259
Deployment, 220, 221, 222, 225, 244,

258
Derived Class, 94, 95
Design, 1, 17, 23, 25, 27, 56, 57, 60,

72, 131, 132, 133, 146, 148, 149, 205,
208, 215, 216, 218, 219, 221, 225
Design Elements, 148
Design Guidelines, 132
Design Patterns, 146, 149, 205
Designing for Interoperability, 149
Designing with classes and objects,

131
Design time, 60, 105, 107, 111, 132
Destructors, 110, 163, 182, 211
Development Phases, 219
Development Process

Purpose, 209, 210, 212

Distributed Systems, 9, 10, 12, 142,
227, 228, 233, 234, 237, 239, 240,
241, 244, 249

Documentation, 21, 22, 23, 210, 219,
220

Domain Analysis, 52, 53, 58
Drawbacks, 50, 88
Encapsulation, 25, 27, 34, 35, 38, 39,

40, 41, 50, 51, 58, 93, 133, 139, 140,
141, 147, 148, 175, 217, 228, 233,
242, 257, 258, 260
Information Hiding, 93

Enterprise Java Beans, 239, 245,
247

Environment, 18, 23, 25, 72, 88, 91,
108, 131, 148, 153, 215, 216, 217,
219, 220, 227, 243, 244, 245, 287

Environment
Environmental opportunities,

215
Environment

Environmental opportunities, 216
Evaluation, 202
Event-handling, 53, 67, 154, 288
Example, 56, 72, 94, 96, 106, 123, 153,

235, 249
Adding a Student, 189
AllMajors, 102, 123, 126, 127, 158,

162, 163, 166, 167, 178, 184
DBClass, 182
Student Majors, 102, 123, 126,

155, 163, 166, 175, 183
Student Subjects, 102, 123, 126,

155, 163, 166, 183
StudentMajors, 158, 162, 163,

166, 173, 177, 178, 201
Student-Related Data, 174
Students, 159, 163, 167, 179, 181,

182, 183, 184, 201
StudentSubjects, 158, 162, 163,

167, 173, 175, 177, 178, 201
Subjects, 102, 123, 126, 127, 158,

163, 166, 184
System, 75, 78, 99, 101, 102, 123,

126, 154, 158, 162, 163, 166, 169,

Object-Oriented Analysis and Design 300

X52.9267-001 Not for Commercial Use

179, 181, 182, 183, 185, 187, 200,
201, 202, 207

System Help, 200
System Prototype, 187

Extensibility, 145, 217
Features, 22, 27, 228
First-Generation languages, 14
Function, 40, 52, 61, 95, 144, 147, 152,

180, 183, 201, 231
Functional, 21, 22, 23, 27, 47, 131,

153, 186, 208, 215, 216, 219, 240,
256, 265

Functional Requirements, 22
Graphical User Interface, 134, 148,

186, 287
GUI, 134, 148, 186, 187, 287, 288, 289,

290
GUI Design Elements, 287
GUI Framework, 134, 287, 288
Hierarchy, 27, 34, 35, 41, 43, 44, 46,

50, 51, 58, 62, 65, 81, 89, 97, 133,
136, 140, 141, 143, 144, 159, 176,
231, 233, 257, 260

High-Level languages, 9, 14, 15
History, 13, 56, 68, 73
Identity, 25, 33, 58, 108
Implementation, 27, 57, 64, 81, 91,

142, 148, 149, 162, 174, 176, 183,
201, 206, 219, 220, 221, 225, 227,
228, 229, 230, 231, 233, 244, 245,
252, 258, 288

Informal English, 54
Inheritance, 34, 41, 42, 43, 44, 59, 62,

63, 71, 80, 81, 82, 84, 86, 88, 89, 91,
95, 96, 98, 99, 103, 111, 136, 141,
144, 147, 152, 160, 167, 168, 176,
202, 209, 212, 213, 229, 230, 231,
232, 257, 260

Instances, 66, 67, 85, 106, 110, 111,
115, 153, 201, 215, 241, 242, 245,
254, 259

Integrated Development
Environment, 287, 288

Integration, 216, 220
Interactions, 52, 81

Interfaces, 9, 10, 14, 24, 32, 39, 40,
47, 52, 57, 58, 92, 93, 95, 103, 132,
133, 134, 138, 139, 140, 147, 149,
150, 152, 182, 183, 186, 187, 194,
199, 201, 203, 205, 211, 215, 216,
227, 228, 229, 230, 231, 232, 233,
234, 235, 237, 238, 239, 240, 241,
242, 243, 244, 245, 247, 248, 249,
250, 251, 253, 258, 260, 263, 287
Interface of a class, 92
Interfaces in UML, 231
Interfaces vs. Implementation, 92

Interoperability, 149, 216, 244, 256
Java, 9, 10, 20, 25, 34, 44, 61, 62, 65,

66, 67, 85, 87, 107, 142, 228, 229,
230, 231, 232, 233, 234, 239, 245, 287

Key Abstractions, 54
Keyboard, 288
Language Features, 151
Layers, 133, 134, 241, 242, 249
Legacy Systems, 51, 147, 150
Lifecycle, 10, 17, 21, 221, 225
Maintain, 219

Documentation, 47, 57, 101, 152,
169, 198, 259, 261

System data, 219
Maintenance, 198, 221, 225, 259, 260,

262
Mechanisms, 215
Menu, 187, 188, 189, 194, 198, 199,

200, 258, 287, 288
Method Overloading, 138, 152
Method Overriding, 64, 65, 66, 88,

172, 176
Methodology, 15, 25, 27, 67, 256, 261
Methods, 17, 20, 25, 34, 39, 40, 49, 50,

54, 60, 61, 62, 63, 64, 65, 66, 67, 68,
74, 81, 82, 83, 84, 87, 88, 92, 93, 94,
95, 105, 106, 107, 108, 109, 123, 124,
125, 126, 127, 129, 133, 138, 139,
140, 142, 152, 154, 155, 156, 157,
158, 159, 163, 164, 165, 166, 167,
174, 177, 181, 182, 183, 184, 197,
201, 202, 203, 210, 211, 212, 227,
228, 229, 230, 231, 232, 233, 234,

 301 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

235, 237, 241, 242, 243, 244, 245,
250, 251, 252, 260

Microsoft, 10, 34, 134, 222, 287
Model, 21, 23, 27, 30, 50, 51, 53, 55,

68, 104, 114, 115, 131, 147, 148, 161,
170, 174, 179, 198, 205, 209, 210,
211, 213, 216, 217, 234, 239, 246,
248, 262, 263, 266
Modeling Activities, 72

Model-View-Controller, 148
Modular, 16, 47, 48
Modularity, 15, 25, 27, 28, 34, 35, 46,

47, 48, 51, 58, 133, 257, 258, 260
Modules, 18, 40, 46, 47, 48, 213, 216,

219
Mouse, 288
Multiple Inheritance, 44, 100, 230, 232
Nodes, 241, 245, 246, 247
Non-functional Requirements, 22
non-object-oriented, 12, 20, 47, 48,

149
Oak, 20
Object-Oriented

Design, 228
Development, 232
Object-Oriented Databases, 262
Object-oriented languages, 9,

19, 44, 47, 49, 61, 92, 107, 152, 229
Object-Oriented methodology,

10, 12, 17, 27, 255
object-oriented methods, 20
Object-Oriented Technology, 261
OOA, 17, 25, 29
OOD, 17, 25, 29
OOP, 17, 25, 29
Paradigm, 24, 34, 39, 50, 60, 62, 93

Object-Oriented Design Goals, 143
Objects, 1, 9, 10, 12, 13, 16, 17, 19,

20, 21, 22, 24, 25, 27, 29, 30, 32, 33,
34, 35, 39, 40, 44, 45, 46, 47, 48, 49,
51, 52, 53, 54, 55, 56, 57, 58, 60, 61,
65, 66, 67, 68, 72, 73, 79, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 98, 99,
101, 103, 104, 105, 106, 107, 108,
109, 110, 111, 114, 115, 118, 119,

121, 123, 124, 126, 129, 130, 131,
132, 133, 134, 135, 136, 137, 139,
140, 141, 142, 143, 144, 145, 147,
149, 150, 152, 153, 154, 155, 156,
158, 159, 160, 161, 162, 163, 164,
166, 169, 170, 174, 175, 176, 177,
178, 179, 182, 183, 186, 187, 197,
201, 202, 203, 205, 207, 209, 213,
215, 216, 217, 219, 221, 225, 227,
228, 229, 230, 231, 232, 233, 234,
237, 239, 240, 241, 242, 243, 244,
247, 250, 251, 253, 254, 255, 256,
257, 258, 259, 260, 261, 262, 263,
264, 265, 267, 287

Objects
Object Oriented Analysis, 17

Objects
Object Oriented Analysis, 17

Objects
Object Oriented Development, 19

Objects
Object Oriented Programming,

56
Objects

Object Oriented Programming,
73

Objects
Object Structure and Relationships,

105
Objects

Object Initialization, 108
Objects

Object De-initialization, 110
Objects

Object Interactions and Relationships,
114

Objects
Object Diagram, 115

Objects
Object Diagram, 119

Objects
Object Diagram, 130

Objects
Object Oriented Analysis, 133

Objects
Object Factories, 147

Object-Oriented Analysis and Design 302

X52.9267-001 Not for Commercial Use

Objects
Object Diagram, 204

Objects
Object Diagram, 213

Objects
Object Diagram, 213

Objects
Object Oriented Software Interfaces,

227
Operations, 10, 22, 38, 40, 46, 49, 52,

54, 92, 132, 138, 139, 140, 141, 147,
149, 150, 152, 153, 175, 179, 180,
181, 201, 202, 203, 210, 211, 212,
213, 216, 217, 227, 234, 242, 244,
248, 252, 258, 260, 263, 287

Operator Overloading, 152
Packages, 47, 207, 241, 243
Parameterized Classes, 153, 201, 213
Partitions, 46, 58, 219, 221, 222, 249
Pattern Scavenging, 212
Patterns, 131, 146, 147, 149, 207, 212,

213, 215, 217, 221
Persistence, 25, 27, 35, 48, 49, 51, 58,

133, 141, 142, 169, 244, 257
Persistence and Data Management, 169
Phases, 23, 25, 51, 53, 60, 72, 151,

186, 210, 215, 216, 219, 220, 221,
222, 226, 249

Platform, 26, 148, 217, 234, 249, 254
Pointers, 18, 20, 85, 103, 232
Polymorphism, 82, 87, 88, 91, 92, 99,

103, 105, 160, 229, 237, 257, 258,
260, 288
Defined, 82
Polymorphic behaviour and interfaces,

230
Primitiveness, 203
Private, 18, 93, 94, 95, 111, 123, 132,

140, 150, 154, 201
Process, 9, 21, 24, 54, 131, 132, 133,

135, 141, 187, 207, 208, 210, 211,
212, 218, 221, 222, 239, 249, 255,
261, 262

Products, 210, 211, 212
Protected, 93, 94, 95, 111, 140, 201

Prototyping, 186, 187
Public, 10, 49, 93, 94, 95, 111, 123,

132, 140, 147, 150, 155, 163, 177,
183, 201, 228, 232, 233, 234, 235,
237, 241

Rational Rose, 10, 262
Rational Unified Process, 10, 255,

261
References, 9, 85, 103, 183, 229, 230,

232
Refining Class Selections, 53, 134,

205, 215, 216
Relational, 57, 142, 147, 149, 150,

169, 170, 174, 249, 250, 262, 263
Relational Databases, 149
Relationships, 81, 266
Reliability, 23, 40, 47, 141, 143, 144,

148, 205, 217
Remote Method Invocation, 234,

239
Reports, 198
Requirements, 22, 56, 179, 208, 221,

256
Requirements Gathering, 208, 256
Reusability, 143, 205, 217
Reuse, 257
RMI, 234, 239
Robustness, 23
Run-time, 23, 47, 48, 49, 60, 88, 92,

105, 111, 114, 130, 132, 142, 203,
241, 242, 243, 244, 257

RUP, 261, 262
Scenario Walk-Through, 211
Searching for Students, 194
Second-generation languages, 15
Security, 20, 23, 33, 100, 244
Sequence, 115, 116, 118, 129
Sequence diagram, 115, 118, 129
Sequence Diagram, 116
Serialization, 48
Server, 147, 148, 149, 227, 234, 242,

246, 247, 252, 259, 260, 263
Sets, 29, 152
Shared memory, 24
Shlaer/Mellor, 51

 303 Object-Oriented Analysis and Design

X52.9267-001 Not for commercial use

Simula, 19, 20
Single inheritance, 41
Single Inheritance, 41
Smalltalk, 20
Software Architecture, 239
Software Development Process,

207
Software Engineering, 9, 12, 17,

68, 132, 215, 217
Goals, 132, 215, 217
Maximal levels, 215, 217

Specification, 105, 213, 245, 256, 261
State, 25, 34, 48, 49, 51, 58, 77, 107,

108, 121, 122, 125, 129, 130, 142,
157, 161, 165, 170, 171, 174, 180,
204, 242, 245, 256

State diagram, 121, 129
State Diagram, 122
Static, 21, 107, 108, 114, 115, 132,

163, 259, 267
Static Views, 21, 114, 267
Strategic Decisions, 148
Strategic Decisions

Strategic vs. Tactical Decisions, 148
String Classes, 152
Structure of an object, 105
Structured Analysis, 54
Subclasses, 31, 43, 64, 65, 82, 84, 88,

92, 103, 160, 229, 230
Sufficiency, 203
Sun, 10, 20, 245
Superclass, 43, 44, 63, 64, 65, 66, 82,

88, 92, 103, 136, 140, 141, 176, 229,
230, 232, 288

System Development Processes, 207

Technology, 10, 256, 262
Tier 1, 250
Tier 2, 250, 251
Tier 3, 250, 251
Tiers, 242, 249, 250
Trademarks, 10
Typical classes, 30
Typical objects, 33
UML, 9, 10, 67, 68, 69, 70, 71, 72, 79,

84, 115, 116, 118, 119, 120, 122, 129,
231, 232, 246, 262

UML Notation, 68, 69, 70
Unit test, 219
Unix, 255, 287
Usability, 23, 27, 186, 265
Use case, 22, 53, 54, 115, 118, 262, 265,

266, 267
Use Case Models, 266
Use cases, 54, 266, 267
Use Cases, 265
Use-Case Analysis, 53
User Interface, 186
User-defined type, 16, 66, 85, 234,

242
Virtual, 65
Visual Basic, 34
Visual Studio, 287
What is an object?, 105
Windows, 10, 255, 287, 291
Wrappers, 147

